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Abstract— The problem of using wireless sensor networks
technology for estimation and control of dynamical systems
has recently received widespread attention within the scientific
community. Classical control theory is in general insufficient to
model distributed control problems where issues of communica-
tion delay, jitter, and time synchronization between components
cannot be ignored.

The purpose of this paper is to extend our work on discrete
time Kalman filtering with intermittent observations [1] that
was motivated by data losses in a communication channel.
Accordingly, we consider the Linear Gaussian Quadratic (LQG)
optimal control problem in the discrete time setting, formally
showing that the separation principle holds in the presence
of data losses. Then, using our previous results, we show
the existence of a critical arrival probability below which the
resulting optimal controller fails to stabilize the system. This
is done by providing analytic upper and and lower bounds
on the cost functional, and stochastically characterizing their
convergence properties ast →∞.

I. I NTRODUCTION

Advances in VLSI and MEMS technology have boosted
the development of micro sensor integrated systems. Such
systems combine computing, storage, radio technology, and
energy source on a single chip [2] [3]. When distributed
over a wide area, networks of sensors can perform a va-
riety of tasks that range from environmental monitoring and
military surveillance, to navigation and control of a moving
vehicle [4] [5] [6]. A common feature of these systems is
the presence of significant communication delays and data
loss across the network. From the point of view of control
theory, significant delay is equivalent to loss, as data needs
to arrive to its destination in time to be used for control.
In short, communication and control become tightly coupled
such that the two issues cannot be addressed independently.

Consider, for example, the problem of navigating a vehicle
based on the estimate from a sensor web of its current
position and velocity. The measurements underlying this
estimate can be lost or delayed due to the unreliability
of the wireless links. What is the amount of data loss
that the control loop can tolerate to reliably perform the
navigation task? Can communication protocols be designed
to satisfy this constraint? Practical advances in the design of
these systems are described in [7]. The goal of this paper
is to examine some control-theoretic implications of using
sensor networks for control. These require a generalization of

Fig. 1. Overview of the system.We study the statistical convergence of the
expected state covariance of the discrete time LQG, where the observation,
travelling over an unreliable communication channel, can be lost at each
time step with probability1− λ.

classical control techniques that explicitly take into account
the stochastic nature of the communication channel.

In our setting, the sensor network provides observed data
that are used to estimate the state of a controlled system, and
this estimate is then used for control. We study the effect
of data losses due to the unreliability of the network links.
We generalize the Linear Quadratic Gaussian (LQG) optimal
control problem —modeling the arrival of an observation
as a random process whose parameters are related to the
characteristics of the communication channel, as shown in
Figure 1. The separation principle states that observer and
plant of a linear system can be designed independently. We
first show that this principle continues to hold in the case of
data loss between the sensor and the estimator. This allows
us to use our result in [1], [8] to show the existence of a
critical loss probability below which the resulting optimal
controller fails to stabilize the system.

Consider the following discrete time linear dynamical



system:

xt+1 = Axt + But + wt (1)

yt = Cxt + vt,

where xt ∈ <n is the state vector,yt ∈ <m the output
vector,ut ∈ <q is the input vector,wt ∈ <n and vt ∈ <m

are Gaussian random vectors with zero mean and covariance
matricesQ ≥ 0 andR > 0, respectively.wt is independent
of ws for s < t. Assume that the initial state,x0, is also
a Gaussian vector of zero mean and covarianceΣ0. LQG
theory provides optimal solution to the control problem by
minimizing the functionals

JN = E[x′NWNxN +
N−1∑

k=0

(x′kWkxk + u′kVkuk)|yN−1]

J∞ = lim
n→∞

1
N
E[

N−1∑

k=0

(x′kWxk + u′kV uk)|yN−1], (2)

for the finite and infinite horizon cases respectively, where
yN = (y1, . . . , yN ) is the observation history vector. In
our previous work on Kalman Filtering with intermittent
observations [1], [8] we proved the existence of a critical
loss probability under which the expected error covariance
of the filter diverges. The aim of this work is to extend this
result to the optimal control problem showing the existence
of a transition from bounded to unbounded states in the
closed loop system as well, when the rate of observation
loss exceeds a given thresholdλc.

In some related work [9] Nilsson presents the LQG op-
timal regulator with bounded delays between sensors and
controller, and between the controller and the actuator, but
he does not address the packet-loss case. This is considered
by Hadijcostis and Touri [10]. Their analysis is restricted
to the static scalar case. Other approaches include using
the last received sample for control, or designing a dropout
compensator [11], [12]. We consider the alternative approach
where the external compensator feeding the controller is the
optimal time varying Kalman gain. Moreover, we analyze
the proposed solution in state space domain rather than
in frequency domain as it was presented in [12], and we
consider the more general Multiple Input Multiple Output
(MIMO) case.

Following the procedure and using the result in [1], [8]
we are able to prove the existence of a critical value for
the arrival rate above which the optimization problem is
bounded, and below which the costJ goes unbounded. This
is accomplished by finding deterministic upper and lower
bounds for the expected optimal cost and their convergence
conditions.

The LQG optimal control problem with missing obser-
vations can also be modelled using the well known Jump
Linear System (JLS) theory [13], where the observer switches
between open loop and closed loop configuration, depending

on whether the packet containing the observation is lost, or
arrives at the estimator in time. However, convergence results
in this case can be obtained only when each jump sub-system
is stabilizable and detectable. The detectability assumption
fails in our case, producing a non-stationary state random
process.

Finally, we mention that philosophically our result can be
seen as another manifestation of the well knownuncertainty
threshold principle [14], [15]. This principle states that
optimum long-range control of a dynamical system with
uncertainty parameters is possible if and only if the uncer-
tainty does not exceed a given threshold. The uncertainty
is modelled as white noise scalar sequences acting on the
system and control matrices. In our case the uncertainty
is due to the random arrival of the observation, with the
randomness arising from losses in the network.

The paper is organized as follows. In section II we
formalize the LQG optimal control problem with intermittent
observations. We provide upper and lower bounds on the
cost functional of the LQG problem, and find the conditions
on the observation arrival probabilityλ for which the upper
bound converges to a fixed point, and for which the lower
bound diverges. Finally, in section III, we state our conclu-
sions and give directions for future work.

II. PROBLEM FORMULATION

We define the arrival of the observation at timet as
a binary random variableγt, with probability distribution
pγt(1) = λ, and with γt independent ofγs if t 6= s. The
output noisevt is defined in the following way:

p(vt|γt) =
{ N (0, R) : γt = 1
N (0, σ2I) : γt = 0,

for someσ2 . That is, the variance of the observation at time
t is R if γt is 1, andσ2I otherwise. Note that the absence of
observation corresponds to the limiting case ofσ →∞. Our
approach is to derive the LQG equations using a “dummy”
observation with a given variance when the real observation
does not arrive, and then take the limit asσ → ∞. Let us
now consider the modified objective functionals:

JN (γN−1,uN−1) = (3)

= E[x′NWNxN +
∑N−1

k=0 (x′kWkxk + u′kVkuk)|yN−1, γN−1]

where γN = (γ1, . . . , γN ) is the history vector of the
observation arrival process. Since in the modified functional
the arrival sequence is supposed to be known, then its
minimization correspond to the minimization of a time
varying system given by Equations (1) whereE[x0x

′
0] = P0,

E[wtw
′
t] = Q, E[vtv

′
t] = Rt, andRt = γtR + (1 − γt)σ2I.

The only time-varying part of the system is the output noise,
which depends on the arrival sequence. The minimization
of the functional given in Equation (3) is given by a time-
varying LQG, which is summarized in the following theorem:



Theorem 1 (finite horizon LQG). Consider the following
linear stochastic system with intermittent observations:

xt+1 = Axt + But + wt

yt = Cxt + vt, (4)

where (x0, wt, vt) are Gaussian, uncorrelated, white, with
zero mean and covariance(P0, Q, Rt) respectively, and
Rt = γtR + (1 − γt)σ2I. The control inputs that minimize
the quadratic functional given by Equation (3) are given by
the following linear feedback:

ut = −Ltx̂t (5)

where x̂t = E[xt|yt−1,γt−1] is the optimal estimator of
the unknown statext obtained by the time-varying Kalman
filter, and the controller gainLt is obtained by the following
recursive algorithm:

SN = WN (6)

Lt = (Vt + B′St+1B)−1B′St+1A, t = N − 1, . . . , 1(7)

St = Wt + A′St+1A− L′t(Vt + B′St+1B)Lt (8)

The optimal Kalman filter estimator with missing observa-
tions, i.e.σ →∞, is given by:

x̂t+1 = (A−BLt)x̂t + γtAKt(yt − Cx̂t) (9)

where the estimator gainKt is given by:

P0 = E[x0x
′
0] (10)

Kt+1 = PtC
′(CPtC

′ + R)−1, t = 0, . . . , N − 1(11)

Pt+1 = APtA
′ + Q +

−γtAPtC
′(CPtC

′ + R)−1CPtA
′ (12)

The minimum of the functional (3) using optimal LQG is
given by:

Jmin(γN−1) = min
uN−1

JN (γN−1,uN−1) =

= tr(S0P0) +
N−1∑
t=0

tr(St+1Q) + (13)

+
N−1∑
t=1

tr (PtL
′
t(B

′St+1B + Vt)Lt) (14)

Proof: For a finite value ofσ, the proof of the theorem
follows directly from standard time-varying finite horizon
LQG, since the sequence of the observation arrivals is fixed
and Rt is thus known (see [16] for example). The optimal
controller gainLt is independent of the arrival process{γt}
and the noise. This is a consequence of the separation
principle. Therefore, the arrival process{γt} affects only
the Kalman estimator̂xt = E[xt|yt−1, γt−1]. The optimal
Kalman estimator for the limiting case corresponding to
σ → +∞ is given by Equations (9)-(12) that were derived
in [8].
The previous theorem shows that the separation principle
holds also for the case of missing observations, therefore the

optimal controller design and the optimal estimator design
can be computed separately. It is important to see that
the optimal estimator given by Equation (9) is causal, i.e.
requires only the knowledge of arrival process{γt} up to
time t and can then be implemented on-line. However, the
minimal functionalJmin(γN−1) depends on the exact arrival
sequence and it is therefore a stochastic variable.

It is therefore interesting to study the expected value of
the stochastic finite horizon LQG, i.e. computinḡJmin =
E[Jmin(γN−1)]. Following the same analysis developed in
[8], although it is not possible to compute exactly the the
estimateJ̄min, some bounds can be computed as follows:

Theorem 2. Assume the arrival processγt is a bernoulli
process whereP [γt = 1] = λ. Then the expected value of
the functional satisfies the following inequalities:

JN ≤ E[Jmin(γN−1)] ≤ JN (15)

where

JN = tr(S0P0) +
N−1∑
t=0

tr(St+1Q) + (16)

+
N−1∑
t=1

tr (F tL
′
t(B

′St+1B + Vt)Lt) ,

JN = tr(S0P0) +
N−1∑
t=0

tr(St+1Q) + (17)

+
N−1∑
t=1

tr
(
F tL

′
t(B

′St+1B + Vt)Lt

)

and

F 0 = F 0 = P0

F t+1 = (1− λ)AF tA
′ + Q (18)

F t+1 = AF tA
′ + Q− λAF tC

′(CF tC
′ + R)−1CF tA

′

Proof: The expectation of Equation (13) is given by:

E[Jmin(γN−1)] = tr(S0P0) +

N−1∑
t=0

tr(St+1Q) + (19)

+

N−1∑
t=1

tr
(
E[Pt]L

′
t(B

′St+1B + Vt)Lt

)

where we used the facts that the trace is a linear operator and
that only the matrices{Pt} depends on the arrival process
{γt}. It was shown in [8] that, althoughE[Pt] cannot be
computed exactly, it is possible to find lower and upper
bounds that can be computed exactly, i.e.

F t ≤ E[Pt] ≤ F t

where the matricesF t, F t are given by Equations (18).
Therefore the bounds of Equation (15) follow directly
from the bounds onE[Pt] and the fact that last term in
Equation (13) is monotonic inP . In fact, P1 ≥ P2 ≥



0, T ≥ 0 ⇒ tr(P1T ) = tr(P1T
1
2 T

1
2 ) = tr(T

1
2 P1T

1
2 ) ≥

tr(T
1
2 P2T

1
2 ) = tr(P2T

1
2 T

1
2 ) = tr(P2T ), and by letting

Q = L′t(B
′St+1B + Vt)Lt ≥ 0 this concludes the proof.

We can now extend the results of the finite horizon LQG
to the infinite horizon case:

Theorem 3 (infinite horizon LQG). Consider the linear
stochastic system with intermittent observations of theorem 1.
The control inputs that minimize the quadratic functional
given by:

1
N

JN (γN−1,uN−1) (20)

converges to the following linear feedback:

ut = −L∞x̂t, as N → +∞ (21)

where x̂t = E[xt|yt−1, γt−1] is the optimal estimator of
the unknown statext obtained by the standard time-varying
Kalman filter, and the controller gainL∞ is the solution of
the following Riccati Equation:

S∞ = W + A′S∞A +
−A′S∞B(V + B′S∞B)B′S∞A (22)

L∞ = (V + B′S∞B)−1B′S∞A (23)

The optimal Kalman filter estimator with missing observa-
tions, i.e.σ →∞, is given by:

x̂t+1 = (A−BL∞)x̂t + γtAKt(yt − Cx̂t) (24)

where the estimator gainKt is given by:

P0 = E[x0x
′
0] (25)

Kt+1 = PtC
′(CPtC

′ + R)−1 t = 0, 1, . . . (26)

Pt+1 = APtA
′ +

+Q− γtAPtC
′(CPtC

′ + R)−1CPtA
′ (27)

The expected value of the minimum of the functional (20)
using optimal LQG is bounded by:

J∞ ≤ E[min
u

J∞(γ,u)] ≤ J∞ (28)

J∞ = tr(S∞Q) + tr
(
F∞L′∞(B′S∞B + V )L∞

)
(29)

J∞ = tr(S∞Q) + tr
(
F∞L′∞(B′S∞B + V )L∞

)
(30)

where the matricesF∞, F∞ are the solutions of the
following equations:

F∞ = (1− λ)AF∞A′ + Q (31)

F∞ = AF∞A′ +
+Q− λAF∞C ′(CF∞C ′ + R)−1CF∞A′ (32)

Proof: The proof for the infinite horizon LQG with
missing observations can be derived by taking the limit
for N → +∞ of the finite horizon LQG. The separation
principle still holds, therefore the sequenceSt converges
to a finite limit S∞ if and only if there exist a solution
to the standard algebraic Riccati Equation (22), otherwise
the sequence is unbounded. The Riccati equation (22) has

a unique semi-definite solution if and only if(A,W
1
2 ) is

observable and(A,B) is stabilizable. These are standard
results that can be found in any optimal control textbook
as in Chen et al.[16]. If the sequenceSt converges, then also
the controller gainLt converges to a finite gainL∞ given
by Equation (23). The equations for the estimator remain
the same as for the finite horizon case, and once again
they depend on the sequence of the observation arrivals.
The minimum of the functional given by Equation (20) is
a stochastic variable. Although the expected value of the
minimum of this functional cannot be computed exactly, it
is possible to give a lower and an upper bounds. In fact:

1
N

JN ≤ E[min
u

1
N

JN (γ,u)] ≤ 1
N

JN ∀N

It was shown in [8] that if the Equations (31)-(32) have a
solution, thenF t → F∞, F t → F∞ for t → +∞, otherwise
the sequence is unbounded. Moreover, sinceSt → S∞, Lt →
L∞ as shown above, then we have:

lim
N→+∞

1
N

tr(S0P0) = 0

lim
N→+∞

1
N

N−1∑
t=0

tr(St+1Q) =

= lim
N→+∞

1
N

N−1∑
t=0

tr(S∞Q) = tr(S∞Q)

lim
N→+∞

1
N

N−1∑
t=0

tr(FtL
′
t(B

′St+1B + V )Lt) =

= lim
N→+∞

1
N

N−1∑
t=0

tr(F∞L′∞(B′S∞B + V )L∞) =

= tr((F∞L′∞(B′S∞B + V )L∞)

Substituting the above limits into Equations (17)-(18) we
obtain the desired bounds on the expected value of the
minimum cost functional, which concludes the theorem
The theorem above states that the separation principle holds
also for the infinite horizon LQG with missing observation.
With this in mind, convergence conditions for the functionals
are equivalent to the ones derived for the estimator alone [1],
[8]. Therefore there exists a critical probabilityλc below
which the closed loop systems is unbounded and above which
it is mean square stable.

III. C ONCLUSION

Motivated by applications where control is performed
over a communication network, in this paper we extend our
previous results on estimation with intermittent observations
to the optimal control problem. First, we show that the
separation principle holds also in the case when the observed
state can be lost at each time step with some probabilityλ.
Then, we show how the optimal control problem formally
reduces to the solution of a standard Riccati equation for



the controller and the same modified Riccati equation that
was studied in [1], [8] for the estimator. Accordingly, we
provide upper and lower bounds on the expected optimal
cost functional and characterize its convergence conditions,
showing a transition to an unbounded cost beyond a critical
arrival probability. We also provide upper and lower bounds
for the cost in the finite horizon case.
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