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Abstract

This paper describes recent development on the de-
sign of the flight simulation and control system for a
Micromechanical Flying Insect (MFI). High level atti-
tude control is considered. Compared to our previous
work, here we include the recently developed dynami-
cal model for the thorax actuators, and various sensor
models to close the control loop. Specifically, a new
wing kinematic parameterization method was developed
to generate feasible wing motions based on the avail-
able thorax model. Compared to our previous method,
this parameterization schemes ensures the boundedness
and smoothness of the thorax input torques while de-
coupling the average roll, pitch, yaw torques in the body
frame. A nominal state-space LTI model in hover was
identified through linear estimation and a LQG con-
troller was designed. Sensor models such as haltere,
magnetic compass, and ocelli were included inside the
closed loop system and the simulations shows stable
hovering and steering maneuvers.

1 Introduction

Micro aerial vehicles (MAVs) have drawn a great
deal of attention in the past decade due to the quick
advances in microtechnology and several groups have
worked on MAVs based on fixed and rotary wings [7].
However, flapping flight provides superior maneuver-
ability that would be beneficial in obstacle avoidance
and for navigation in small spaces. Therefore, the UC
Berkeley Micromechanical Flying Insect (MFI) project
uses biomimetic principles to develop a flapping wing
MAV that will be capable of sustained autonomous
flight [4],[14]. In this paper we address the attitude
control problem for an MFI, including realistic actua-
tors and sensor models.

Based on the recently developed thorax model [1],
low level wing motion parameterization and open loop
control was considered. As a starting point, the anal-
ysis is based on the linear model of the thorax. The
input torques are constrained only in their amplitudes,
and they are assumed to take form of the sinusoidal
waves and their higher harmonics.

∗This work was funded by NSF KDI ECS 9873474, ONR
MURI N00014-98-1-0671, and DARPA.

The original wing kinematic parameterization
method in our previous works ([2], [9], [3]) is no longer
feasible due to the discontinuities at the end of consec-
utive wingbeats, which causes the thorax input torques
to demonstrate jumps and large out-of-limit ampli-
tudes. In this work, we have to find a new wing mo-
tion parameterization, which keeps the thorax inputs
smooth and bounded, while decoupling roll, pitch, yaw
torques.

Based on the new parameterization method, we
adopt our previous identification and control scheme
[3] to find a new discrete-time linear time-invariant
(LTI) model which captures the main dynamic fea-
tures of the MFI near hover and design a LQG con-
troller which stabilizes and provides setpoint tracking.
In addition, the thorax model, including torque and
bandwidth constraints, and various sensor models are
included inside the closed loop system.

2 Insect Dynamics Model

The attitude dynamics of a flapping insect can be
written as follows [9]:

Ṙ = Rω̂b

ω̇b = J−1
b (τ b − ωb × Jbωb)

ω̂b =
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b −ωy
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(1)

where ωb = [ωx
b ωy

b ωz
b]T is the angular velocity vec-

tor of the insect body relative to the body frame B,
τ b ∈ R3 is aerodynamic torque vector relative to the
body frame B attached to the center of mass of the
insect body, Jb ∈ R3×3 is the moment of inertia of
the insect body relative to the body frame B, and
(a × b) is the cross product of the vectors (a, b). To
simplify the notation, we drop the superscript b from
equations, implicitly assuming that all quantities are
measured relative to the body frame B. The matrix
R ∈ SO(3) = {R ∈ R3×3 : RT R = I,detR = +1} is
the rotation matrix representing the orientation of the
insect body frame B relative to the fixed frame A. In
particular, let vb = [xb yb zb]T and va = [xa ya za]T
the coordinates of a vector v ∈ R3 relative to the
body frame B and the fixed frame A, respectively.



Then, these coordinates are linked together by the lin-
ear transformations va = Rvb and vb = RT va. The
above dynamics has been implemented into the Vir-
tual Insect Flight Simulator (VIFS) [10], a software
testbed for flapping flight simulations.

3 Sensors

In this section we briefly describe the three sen-
sors, the ocelli, the magnetic compass and the hal-
teres, used to estimate the three insect body angles
(roll,pitch,yaw) relative to the fixed frame, and the
corresponding angular velocities. The ocelli can be
used to estimate the roll and pitch angles, the mag-
netic compass to estimate the yaw, and the halteres to
estimate the three angular velocities. In this paper we
report only the major results and details are presented
in [6]. These sensors are currently being developed,
and preliminary results are very promising [12].

3.1 Ocelli

The ocelli are a sensory system present in many fly-
ing insects. This system comprises of three wide angle
photoreceptors placed on the head of the insect. They
are oriented in such a way that they collect light from
different regions of the sky. The ocelli are believed to
play an important role in attitude stabilization in in-
sect flight by comparing the intensity of light measured
by the different photoreceptors [11].

Inspired by real insects, we describe a biomimetic
ocelli-like system composed by four photoreceptors
rather than three, as observed in nature. Although all
the results in this paper can be extended to a three-
photoreceptor ocelli, we prefer to present them relative
to a four-photoreceptor configuration since the design
is simplified and results are more intuitive. All the
results are based on the assumption that the light in-
tensity is a monotonic decreasing function of the angle
between the light source and the photoreceptor.

The ocelli sensory system is modeled as four ideal
photoreceptors, called P1, P2, P3, P4, fixed with respect
to the body frame B. These photoreceptors collect the
light intensity from a different region of the sky. They
are oriented symmetrically such that they have the
same latitude and their axes intersect the sky sphere
forming an imaginary pyramid, whose vertex is placed
at the center of the insect head. Every photoreceptor
collects light from a conic region Ai around its ideal
orientation Pi as shown in Figure 1a. The measure-
ments from the photoreceptors are simply subtracted
pairwise and these two signals are the output from the
ocelli:

yo
1 = I(P1)− I(P2), yo

2 = I(P3)− I(P4) (2)

where I(Pi) is the output from the i-th photodiode.
Without loss of generality we assume that the light
source is placed at position X = (0, 0, 1) relative to the
fixed frame. If the output of a photodiode is a mono-
tonic decreasing function of its latitude relative to the
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Figure 1: (a) Graphical rendering of ocelli present
on flying insects. Four photoreceptors, referenced as
P1, P2, P3, P4, collect light from different regions of the sky.
The shadowed area represents this region for photoreceptor
P3. (b) Schematic of ocelli biomimetic sensor.

light source, we showed that the following proposition
holds true [6]:

Proposition 1. If the photoreceptor output is a mono-
tonic decreasing function of its latitude θi relative to
the light source, then the signals yo

1 and yo
2 defined in

Equations (2) always satisfy the following conditions:

kminr32 ≤ yo
1 ≤ kmaxr32 (3)

kminr31 ≤ yo
2 ≤ kmaxr31 (4)

r33 → 1 =⇒ yo
1 → kor32; yo

2 → kor31 (5)

where 0 < kmin < ko < kmax are constant, and rij is
the i− j entry of the rotation matrix R.

Therefore, it is evident that the outputs from the
ocelli can be used as an estimate of the position of
the ocelli reference frame relative to the light source,
since for small deviations from the equilibrium, i.e.
R ≈ I3×3, r31 and r32 correspond to the roll and pitch
angles, respectively. More general results for attitude
stabilization are given in [6]. A prototype for the ocelli
system, which is currently being developed seems to
confirm the mathematical model results [12].

3.2 MEMS Magnetic Compass

Attitude control of MFI body requires a set of sen-
sors that can estimate its orientation relative to a
desired frame. The ocelli sensory system provides a
means to reorient the insect body towards a specific
direction, however its heading remains arbitrary. Since
heading it is fundamental for forward flight and ma-
neuvering, we propose to solve this problem by adding
a MEMS magnetic compass. This magnetic sensor can
estimate MFI heading based on the terrestrial geomag-
netic field. The MEMS compass is a ”U-shaped” sus-
pended structure as shown in Figure 2. Electric cur-
rent flows across this structure, interacting with the
terrestrial geomagnetic field. The Lorentz forces act-
ing on the electric currents generates a force given by
Fl = Li ×B, where Fl is the total force at the tip of
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Figure 2: (a) Photo of a MEMS magnetic sensor prototype
(b) Schematic of a magnetic compass.

the cantilever, L is the length of one side of the can-
tilever, i is the total current, and B is the terrestrial
electromagnetic field. The deflection of the cantilever
is sensed at the base by a strain gage. The deflec-
tion is proportional to the force perpendicular to the
cantilever,i.e. Fc = Fl · n, where n is the sensing di-
rection of the strain gage. Therefore, the output from
the strain gage can be used to estimate the heading of
the MFI when the magnetic sensor is attached to the
MFI body. In fact, without loss of generality, assume
that the earth magnetic field is oriented along the x-
axis of the fixed frame, i.e. B = [0 0 B]T relative to
the fixed frame. Also, we orient the compass such that
the current i = [0 0 − i]T and the sensing direction
n = [1 0 0]T relative to the body frame (see Figure 2).
According to these definitions, the signal measured by
the staring gage is given by:

yc = Fc = L
�
[0 0 − i]× (RT [0 0 B]T )

�
[1 0 0]T

= LiB r12 = kc r12
(6)

where we use the fact that the coordinates of the
earth magnetic field relative to the body frame is given
by vb = RT [0 0 B]T . For small deviations from the
equilibrium, i.e. R ≈ I3×3, r12 correspond to the yaw
angle, thus providing an estimate for the heading.

3.3 Halteres

Biomechanical studies on insect flight revealed that
insects use structures, called halteres, to measure body
rotations via gyroscopic forces [5]. The halteres of a
fly resemble small balls at the end of thin sticks. Dur-
ing flight the two halteres beat up and down in non-
coplanar planes through an angle of nearly 180o anti-
phase to the wings at the wingbeat frequency. This
non-coplanarity of the two halteres is essential for a
fly to detect rotations about all three turning axes [8].
As a result of insect motion and haltere kinematics,
a complex set of forces acts on the halteres during
flight: inertial, angular acceleration, centrifugal, Cori-
olis, and gravitational forces. However, by taking ad-
vantage the peculiar characteristics (frequency, modu-
lation, and phase) of the Coriolis signals on the left and
right halteres, a demodulation scheme has been pro-
posed to decipher roll, pitch, and yaw angular velocity

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 3: (a) Schematic of enlarged halteres of a fly. (b)
Photo of the completed haltere.

[13]. It is shown in [6] that the halteres outputs are
almost equivalent to the following smoothed version of
the insect angular velocities:

yh
1 (t) = a

∫ t

t−T
ωx(τ)dτ = ko1 ω̄x(t)

yh
2 (t) = b

∫ t

t−T
ω(τ)dτ = ko2 ω̄y(t)

yh
3 (t) = c

∫ t

t−T
ω(τ)dτ = ko3 ω̄z(t)

(7)

where T is the period of oscillation of the halteres,
a, b, c, ko1, ko2, ko3 are constants and ω̄i is the mean
angular velocity of the insect over a period of oscilla-
tion of the halteres.

4 Linear Thorax Model

Figure 4: Wing-Thorax structure. Courtesy of [1]

Each wing is controlled by the thorax, a complex
trapezoidal structure actuated by two piezoelectric ac-
tuators at its base, as shown in Figure 4. A complete
nonlinear model for the thorax, developed in [1], can
be written as follows

M

�
θ̈2

α̈

�
+ B

�
θ̇2

α̇

�
+ K

�
θ2

α

�
+

�
0

f(α̇)

�
= T

�
u1

u2

�
(8)

where f(α̇) = 1
2m

′
ω,2(α̇)2, θ2 is the leading edge flap-

ping angle from the four bar mechanism, α = θ1−θ2 is
the phase difference between the four bar output an-
gles, u1 and u2 are the control input torques to the



actuators, M and B are the inertia and damping ma-
trices, which are assumed to be constant. However,
parameters in K and T matrices includes some slowly
time varying terms, and the control inputs (u1, u2) are
limited to 10µNm by physical constraints.

The relation between the state variables in Equa-
tion (8) and the wing motion variables (stroke angle
φ, rotation angle ϕ) can be approximated as φ = θ2

and ϕ = 2α. Based on Equation (8), with a change
of variables, neglecting the nonlinear components, we
can derive the linear actuator model as

M0

[
φ̈
ϕ̈

]
+ B0

[
φ̇
ϕ̇

]
+ K0

[
φ
ϕ

]
= T0

[
u1

u2

]
(9)

where M0, B0, K0, and T0 are constant matrices cal-
culated from the data provided in [1].

Equation (9) is a stable linear MIMO system, its
steady state solution at a particular frequency can
be calculated through complex matrix operations. To
generate sufficient lift to sustain the insect, the stroke
and rotation angles must be follow a trajectory which
mimic insect wings flapping motions, such as φ =
π
3 cos(wt) and ϕ = π

4 sin(wt), where w = 2πf and
f = 150Hz is the wingbeat frequency. The desired in-
put torques to the actuators that, in steady state, give
rise to the wing trajectory above can be calculated
from�

u1

u2

�
=

�
G11(jw)G12(jw)
G21(jw)G22(jw)

�−1

w=150∗2π

�
π
3
ejπ/2

π
4

�
(10)

where G(jw) is the frequency domain system trans-
fer function matrix, the resulted steady state inputs
are u1 = 5.64 sin(wt− 2.67), u2 = 6.48 sin(wt− 2.47).
These inputs drive the wings to their steady state
trajectory within 2-3 wingbeats, when the wings are
started from rest.

5 Wing Motion Parameterization

In order to decouple roll, pitch, yaw toques, we need
to generate different wing motions through proper
kinematic parameterization schemes, while still keep-
ing the input torques within limits. Due to disconti-
nuities at consecutive wingbeats, our previous param-
eterization scheme presented in [3] is no longer fea-
sible, since the corresponding control inputs demon-
strate large amplitude jumps between wingbeats. In
order to keep the control inputs smooth and bounded,
proper wing motions need to be designed to ensure
continuity at the end of wingbeats, while still preserv-
ing maneuverability during each wingbeat. Based on
qualitative analysis of wing aerodynamics and thorax
dynamics, one feasible parameterization was found by
adding one additional term, g(t) in the stroke angle
profile to change its mean amplitude, and in the ro-
tation angle profile to change the timing of rotation
at the end of the first half-stroke. Since we want to
keep the input torque continuous at the beginning and
end of each wingbeat, the additional term with its first
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Figure 5: (a) Left plots: Wing motions results from
(γ, αl, αr) = (1, 1,−1). The solid line traces correspond
to the symmetric motion (γ, αl, αr) = (0, 0, 0). (b) Right
plots: Input torques family for all 9 possible permutations
of the parameters (γ, αl, αr) ∈ {−1, 1}. The solid line is
obtained by setting these parameters to zero. The horizon-
tal lines correspond to the input saturation limits.

and second derivative should be zero at the beginning
and end of wingbeats, i.e. g(0) = g(T ) = ġ(0) =
ġ(T ) = g̈(0) = g̈(T ) = 0, where T is the wingbeat pe-
riod. A possible parameterization that satisfies such
constraints is the following:

g(t) =
3
10

sin(
1
2
wt)− 1

10
sin(

3
2
wt)

φl(t) =
π

3

(
cos(wt) +

1
2
γg(t)

)

φr(t) =
π

3

(
cos(wt)− 1

2
γg(t)

)

ϕl(t) =
π

4
(sin(wt) + αlg(t))

ϕr(t) =
π

4
(sin(wt) + αrg(t)) (11)

where (γ, αl, αr) ∈ [−1, 1] are the tunable kinematic
parameters, and the subscript r and l stand for right
and left wing, respectively. The parameters αl and αr

are strongly related to wing flip timing at the end of
first half stroke: a positive value corresponds to delay-
ing the wing rotation at the upstroke and a negative
value advancing the rotation, a null value results in
a symmetric wing rotation at both the half-strokes.
The parameter γ modifies the mean stroke angle am-
plitudes of the wing: a positive value corresponds to a
larger mean stroke angle amplitude on the left wing,
a negative value to the opposite, and a zero value to
equal stroke angle amplitudes.
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As an example, Figure 5a shows both left and right
wing motions resulted from choosing the parameters
as γ = 1, αl = 1, and αr = −1. Also plotted is the
additional term, g(t), which serves as amplitude mod-
ulation for the stroke and rotation angles. We can
see that with this parameterization scheme, continu-
ity is ensured at the end of wingbeat, while different
wing motion can be manipulated in the middle of each
wingbeat by varying the three parameters (γ, αl, αr).

With the designed wing motion trajectory as the
output from the thorax model, we calculate corre-
sponding desired input torques by substitution :�

u1(t)
u2(t)

�
=T−1

0

�
M0

�
φ̈(t)
ϕ̈(t)

�
+B0

�
φ̇(t)
ϕ̇(t)

�
+K0

�
φ(t)
ϕ(t)

��
(12)

This approach is equivalent to feed-forward control of
wings trajectory within a single wingbeat. Figure 5b
plots in detail the family of all control inputs that we
can obtaining by varying the parameters (γ, αl, αr) be-
tween (−1, 1). We can see that the inputs are always
bounded by ±10µNm. To test weather the above pa-
rameterization scheme can be used to generate desired
aerodynamic torques to steer the insect body, while
producing sufficient lift to sustain the insect, we found
the empirical map from wing kinematic parameters to
the average body torques generated over one wingbeat
through VIFS. Figure 6 and Figure 7 show the simu-
lation results. The empirical map can be written as
follows.

τ̄ϕ = f1(αr, αl, γ) = cγ + δϕ

τ̄θ = f2(αr, αl, γ) = a11αl + a12αr + δθ

τ̄ψ = f3(αr, αl, γ) = a21αl + a22αr + δψ

where the coefficients a11, a12, a21, a22, c are constants,
and the errors δη, δθ, δψ are bounded. It is seen that
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f2 and f3 can be approximated with linear functions
of αl and αr, while f1 with a linear function of γ only.
Therefore the mean torques are decoupled for the iden-
tification and control purposes. One more advantage
of this scheme is the linearity of all the functions. Con-
sequently, given the desired mean torques for the next
wingbeat, we can obtain the desired wing kinematic
parameters through the linear inverse maps. Once the
kinematic parameters are known, the wings trajectory
is obtained by substituting their value into Equations
(11), and the corresponding control inputs by substi-
tuting the wings trajectory into Equations (12). In
other words, this means that we know the desired in-
put torques that we need to apply to the actuators to
generate the desired mean body torques in the next
wingbeat.

As with our previous work, in order to tune the
average vertical thrust to balance the insect’s weight,
it is sufficient to modulate the wing flapping frequency.
Simulation results in Figure 6 shows the average mean
lift as an approximate linear function of frequency.

6 Model Identification

The analysis in the previous section provide us with
a torque decoupling scheme, together with a set of
feasible control inputs (wing kinematic parameters).
Since we are interested in the insect dynamics close to
the hovering regime where angular deviations and an-
gular velocities are small, we linearize and average the
dynamics of Equations (1) within a single wingbeat.
Therefore, for the purpose of designing a simple feed-
back controller, we approximate the continuous-time
nonlinear system, with a discrete-time LTI model in
the following form:

x(k + 1) = Ax(k) + Bu(k) + w(k)
y(k) = x(k) + v(k) (13)



where x = [φ̄ θ̄ ψ̄
¯̇
φ

¯̇
θ

¯̇
ψ]T is the vector of average roll,

pitch, yaw angles and angular rates over one wingbeat;
w represents the time varying component which ap-
pears as an external disturbance to the linear model
[9]; y = [ȳo

2 ȳo
1 ȳc ȳh

1 ȳh
2 ȳh

3 ]T is the vector of mea-
sured outputs, with additional measurement noise v;
C and D matrices are set to be identity and zero ma-
trices, respectively; and u = [u1 u2 u3]T = [γ αl αr]T
are the control inputs, i.e., the wing kinematic param-
eters. For small angles and angular velocities, we have
x = [r̄32 r̄31 r̄21 ω̄x ω̄y ω̄y]T , where rij is the i−j entry
of the rotation matrix R.

The matrices [A,B] can be obtained directly from
MFI morphological parameters such as mass, moment
of inertia, center of mass, etc. However, these param-
eters are difficult to obtain in practice. Moreover, this
approach cannot model the effect of the time varying
part of the aerodynamic forces. An alternative ap-
proach is to run a large number of experiments and
record the pair [y(k), u(k)], and then find the matrices
[A,B] that best fit the data. The model identification
problem can be recasted into a least square solution to
an overdetermined set of linear equations as Ez = d,
where z = [a11, ..., a66, b11, ..., b63]T is the vector of sys-
tem parameters to be estimated, aij and bij are the
i− j entries of the matrices A and B respectively, and
E = E (y(·), u(·)) and d = d (y(·)) are matrices whose
elements consists of the experiment data. The least
square solution which minimizes the norm of the error
‖ e ‖2=‖ d−Az ‖2 is given by z = E(ET E)−1ET d.

The experiments were performed on the Virtual In-
sect Flight Simulator (VIFS), developed by the au-
thors to provide a software testbed for insect flight
[10]. The experimental data were generated with ran-
dom inputs and initial conditions near the equilibrium.

Estimation of the system parameters and further
investigation into the system dynamics in Equation
(13) results in the following approximate parameter
structures:

A =
[

I3×3 TI3×3

A21 A22

]
B =

[
03×3

B22

]

where T is the wingbeat period. The parameters of
the state-space realization in Equation (13) consist of
the elements of the A21, A22 and B22 matrices. As
expected, it was found that A22 matrix is close to
an identity matrix. The structure of the B22 matrix
also reflects our previous torque decoupling scheme
through wing kinematic parameterization of Equation
(13).

To check the ability of the identified model to pre-
dict the behavior of the MFI in hover, the model was
simulated for a consecutive 50 wingbeats, and is com-
pared to the results from the simulator. Figure 8 plots
the mean angle and angular rates predicted by the
LTI model together the simulation results from VIFS.
It can be seen that the predicted values match the
simulated ones very well.
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Figure 8: Comparison of the predicted mean angles and
angular velocities from the nominal LTI model(dashed line)
and those simulated from VIFS (solid line) over 50 consec-
utive wingbeats; γ, αl, and αr are chosen randomly.

7 LQR Controller Design

Based on the identified model found above, stabiliz-
ing state feedback control laws are designed and tuned
first on the nominal LTI model, then tested on the fully
nonlinear continuous time of Equations (1) . This ap-
proach provides a more systematic and robust way of
design feedback controllers compared to our previous
work [2]. In order to address the trade off between reg-
ulation performance and control effort to avoid control
input saturation, and also to take into account process
disturbances and measurement noise in Equation (13),
we employed a linear quadratic Gaussian (LQG) opti-
mal controller.

As a first step, a state feedback LQR regulator
u = −Kx was designed to minimizes the following
quadratic cost function

J = lim
N→∞

E(
N∑

k=1

x(k)T Qx(k) + u(k)T Ru(K)) (14)

where Q ≥ 0 and R > 0 are the weighting matri-
ces to define the trade-off between regulation perfor-
mance and control effort. The controller was designed
with standard discrete-time LQG software, and the
diagonal entries in the weighting matrices are itera-
tively tuned to ensure a good transient response with-
out saturating the control inputs. The final choice of
the the weighting matrices Q and R for the regulator
are Q = diag(10, 20, 20, 1, 1, 1) and R = diag(1, 2, 5).

The above LQR optimal state feedback u = −Kx
can be substituted with a more realistic output feed-
back u = −Ky, where the output y is given by the
ocelli, MEMS compass and halteres.
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Figure 9: Simulation of MFI evolution and sensor outputs
during 90o steering. (Top plots): Roll, η, pitch, θ, and

yaw, ψ angles. (Middle plots): Roll, η̇, pitch, θ̇, and yaw,

ψ̇, angular velocities. (Bottom plots): Actuators control
inputs (u1, u2) for left (left plot) and right (center plot)
wing. The bottom right plot shows a detail of the torque
u1 of the left wing for the first 10 wingbeats. Time on ab-
scissae is expressed in wingbeats, i.e. 1 wingbeat = 6.7ms

The LQR controller was finally tested on the fully
nonlinear continuous time model which includes the
MFI dynamics of Equation (1), the thorax dynamics of
Equation (9), and the sensors models described in Sec-
tion 3. The simulations are based on an MFI of 100mg
and 2cm tip-to-tip wingspan with wingbeat frequancy
f = 150Hz.

In the first simulation, shown in Figure 9, the MFI
is started from initial condition x0 = (η, θ, ψ, η̇, θ̇, ψ̇) =
(0, 0, 90o, 0, 0, 0), and it rotates the heading to the
desired hovering condition x∗ = (η, θ, ψ, η̇, θ̇, ψ̇) =
(0, 0, 0, 0, 0, 0). The LQR controller drives smoothly
the MFI to the desired final position in approximately
50 wingbeats, which means in approximately a third
of the second. Note that the pitch velocity, shown
in Figure 9 (center middle plot), exhibits a highly os-
cillatory behavior. This is not the result of a poor
controller, but the result of the unavoidable periodic
pitch torque due to the flapping of the wings. In the
Figure 9, we overimposed the output of the sensors to
the evolution of the MFI angles and angular veloci-
ties. The halteres estimates remarkably well the mean
of the angular velocities by filtering out the high time
varying disturbance due to the flapping wing. The
ocelli track the roll and pitch angles correctly. The
MEMS compass initially underestimates the yaw an-
gle, but provides the correct error sign, and eventually
it tracks the yaw correctly when the the angle becomes
small. It is possible to show that the MEMS compass
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Figure 10: Simulation of MFI evolution and sensor out-
puts during recovering from upsidedown orientation. (Bot-
tom plots): Wing kinematic parameters (γ, αr, αl).

always estimates correctly the sign of the yaw angle,
thus driving the MFI to the desired position. The bot-
tom plots of Figure 9 present the corresponding control
inputs to the thorax actuators. As expected, the con-
trol inputs never exceed the torque limits and they are
continuous at the end of every wingbeat.

In the second simulation in Figure 10, the MFI is
started from initial condition x0 = (η, θ, ψ, η̇, θ̇, ψ̇) =
(160o, 0, 0, 0, 0, 0), which correspond to an almost up-
sidedown orientation, and it rotates the heading to
the desired hovering condition x∗ = (0, 0, 0, 0, 0, 0) as
above. Again, the LQR controller drives smoothly the
MFI to the desired final position in approximately 75
wingbeats, which correspond to a half of the second. In
this situation, when the roll and pitch angles are very
large, the ocelli fail to estimate them exactly, however
they still drive the system to the desired position. This
is not accidental and it is shown in [6] that they always
provide a signal that drives the MFI to hovering. This
implies that the LQR controller, albeit designed for
small angles and angular velocities, always drives the
system to the desired position. The bottom plots the
Figure 10 present the corresponding wing kinematic
parameters that specify the wings motion. They are
strongly related to the control effort required by the
LQR controller. The parameter γ, which is directly re-
lated to roll body torque, saturates, thus implying an
aggressive maneuvering, and infact the MFI roll angle
exhibit some overshooting as it in generally common
to controller with high gains. On the other hand, the
LQG gains were designed for small angle maneuvers,
and anti wind-up techniques for large angles maneu-
vers will be explored in the future. Additional tests
were performed on various initial conditions which all
yield good results.



8 Conclusion

In this work, high level attitude control of the MFI
was considered. Based on recently developed tho-
rax model, a new wing kinematic parameterization
method was developed to generate feasible wing mo-
tions. Compare to our previous method, this pa-
rameterization schemes ensures the boundedness and
smoothness of the thorax input torques while at the
same time decouples the average roll, pitch, yaw
torques in the body frame. A nominal state-space LTI
model in hover was identified through linear estima-
tion and a LQR controller was designed. Sensor mod-
els such as haltere, magnetic compass, and ocelli were
included inside the closed loop system and the simu-
lations show a performance comparable to that of real
insect that can complete a full maneuver in approxi-
mately 30− 50 wingbeats. It is also shown that under
LQR control the MFI is able to recover from large an-
gular displacements such as recovering from an upside
down orientation and steering 90o degrees in the yaw
axis with fast transient response, despite the fact the
LQR controller was designed for small angular errors
and the sensor outputs are nonlinear for large angles.

Future work involves quantification of the parame-
ter uncertainties in our nominal model, such as the sen-
sors noise and the atmospheric turbulence, from exper-
imental data. Also, given the limited computational
resources of the MFI, we will address the problem of
reducing complexity of the controller, for example by
controlling the wing motions every N -wingbeats. Ex-
tension to the complete 6 DOF system dynamics in-
cluding position control need to be investigated in hov-
ering and forward flight. Alternative wings motion pa-
rameterizations will be evaluated to minimize energy
consumption and generate large body torques.
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