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Abstract. In this paper we analyze randomized coordination control strate-
gies for the rendezvous problem of multiple agents with unknown initial po-
sitions. The performance of these control strategies is measured in terms of
three metrics: average relative agents’ distance, total input energy consump-
tion, and number of packets per unit time that each agent can receive from
the other agents. By considering an LQ-like performance index, we show that
a-priori knowledge about the first and second order statistics of agents’ initial
position can greatly improve performance as compared to rendezvous control
strategies based only on relative distance feedback. Moreover, we show that
randomly switching communication topologies, as compared to static commu-
nication topologies, require very little information exchange to achieve high
performance even when the number of agents grows very large.

1. Introduction and Previous Work. The need for coordination of multiple
mobile vehicles appears in many applications such as search-and-rescue missions
and pursuit evasion games [1][2][3][4]. Coordination among vehicles requires ex-
change of information between them. However, the amount of information that
can be exchanged is limited by many factors such as channel bandwidth, limited
communication range and interference, therefore it is desirable to devise coordina-
tion strategies that require the transmission of a limited number of messages among
the agents [5][6]. However, limiting information exchange among agents negatively
impacts the performance of the vehicles as a group in terms of other metrics such
as energy consumption and time required to accomplish a task. The goal of this
paper is to analyze the tradeoffs between these aspects within the framework of ren-
dezvous control, i.e. convergence of all agents to a common location not necessarily
specified.

Recently the rendezvous control has been approached by reformulating it as a
consensus problem. The consensus problem has been widely studied in terms con-
vergence properties of Markov chains [7] [8], and it has been recently proposed as
an effective approach to flocking of mobile agents [9]. Since then many results have
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been obtained, as summarized in the survey paper [10]. In particular, some re-
searchers studied convergence rate for fixed communication topologies [11][12][13].
If the communication graph is time-varying, then convergence to a common loca-
tion is not guaranteed, therefore another line of research focused on finding sufficient
convergence conditions [14][15][16][17][18]. Other authors studied instead conver-
gence rates for fixed communication topologies chosen at random from an underlying
communication graph in order to reduce communication load while still maintaining
fast convergence rates [19][13]. Some other researchers studied stochastic commu-
nication switching of the communication topology where only one agent at a time
can communicate and they looked explicitly at first and second order statistics to
estimate convergence rate [20][21][22]. Finally, another direction of research focused
on deterministic state-dependent communication graphs which result from limited
communication range of vehicles by using control strategies based on potential func-
tions to find convergence criteria and performance [23] or by using strategies that
guarantee connectivity and convergence to a common location [24].

Despite all these remarkable results, there are still interesting questions to be
answered. For example, by recasting the rendezvous problem of mobile robots as a
consensus problem, only convergence rate has been studied so far. However, energy
expenditure is also important and cannot be neglected. Moreover, the effect of any
prior information about statistical distribution of agents on the overall performance
has not been studied in the literature. Finally, it is also relevant to analyze the
impact of the number of messages exchanged between the agents per unit period in
terms of overall performance, and how this performance scales with the number of
agents. The goal of this paper is to address some of these aspects.

In particular, in this paper we assume that each agent has a GPS-like sensor
which provides its position with respect to some absolute coordinate frame. Also
we consider a time-varying random communication topology, where every agent ex-
changes messages with a small set of other agents which are selected at random
among all agents. The rationale behind this communication scheme is that the ran-
dom selection of communicating agents enhances information diffusion rates, very
similarly to the well known “small world effect” initially proposed by Watts and
Strogatz [25] and recently extended to the consensus problem by several authors
[26][27][28]. The difference between the previous works and this one is that in the
former the random rewiring between agents in the network is applied only once,
while here it is applied at every communication step, thus increasing even further
the degree of randomness in the communication topology. In spirit, this approach is
also similar to the one proposed in [21][22]. However, differently from those works,
the specific structure adopted here allows us to explicitly compute the overall system
performance and the convergence rate from a two-dimensional optimization problem
independently of the number of agents. Moreover, the protocol which implements
the randomized communication strategy is very simple, and the performance does
not degrade beyond a certain value as the number of agents increases even when
only one message per time step is exchanged. Differently, most popular fixed com-
munication strategies are either easy to build but have poor performance, like the
symmetric communication graphs [13], or have good performance but are difficult
to construct, like the Ramanujan graphs [29].

Moreover, we show that prior information about agents initial position distri-
bution can greatly improve performance and reduce communication load among
agents. In particular, the performance improvement depends on the ratio between
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the spreading (variance) of the initial agents distribution and the variance of the
agents center of mass with respect to its a-priori estimate. In fact, if this ratio is
small, then applying feedback on the a-priori expected agents center of mass dra-
matically reduces rendezvous cost, even in the extreme scenario when agents do
not communicate at all. Differently, if the ratio is large then we recover that the
optimal rendezvous strategy is indeed a consensus strategy under which each agent
uses only relative distance information from the other agents.

The paper is organized as follows. In the next section we provide the mathe-
matical formulation for the rendezvous control problem as a LQ-like optimization
and we describe the rationale behind the proposed control feedback. In Section III
we explicitly compute the performance of the overall systems for fixed control gains
and we show that it can be reduced to a two-dimensional nonlinear control problem.
Section IV provides the numerical tools to find the optimal control parameters and
also discuss some relevant analytical results in terms of systems performance and
design parameters. Section V presents a numerical example based an a specific ren-
dezvous control scenario and shows how the tools developed in the previous section
can be used. In Section VI we considered a GPS-free scenario where agents can only
measure relative position with respect to the other agents and we compare this per-
formance with the GPS-based performance. Finally, in Section VII we summarizes
the results.

2. Problem formulation. Consider N identical agents whose dynamics are de-
scribed by 2D linear discrete time integrators:

xi(t + 1) = xi(t) + ui(t), i = 1, . . . , N

where xi, ui ∈ C, whose real and imaginary parts correspond to the coordinates
in the two-dimensional plane. We assume that each agent has access to its own
position through a GPS-like sensor, and that process disturbance and measurement
noises are absent. More compactly we can describe the agents dynamics in vector
form as follows:

x(t + 1) = x(t) + u(t) (1)
where x = (x1, x2, . . . , xN )T and u = (u1, u2, . . . , uN )T . Finally, to keep the mathe-
matical analysis simple, we assume that each robot is a point agent, i.e. we neglect
vehicle size.

The objective of rendezvous control is to devise a coordination scheme that forces
the agents to converge to a common location, or, equivalently, that forces the relative
distances among all agents to be null. A natural way to enforce this objective is to
penalize relative distances among agents using a quadratic cost cx(x) : CN → R+

defined as follows:

cx(x) =
1

2N

N∑

i=1

N∑

j=1

|xi − xj |2 = x∗Πx =
N∑

i=1

|xi − xcm|2 = ||x− xcm1||2,

Π = I − 1
N

11∗,

where 1 = (1, 1, . . . , 1)T ∈ RN , I is the identity matrix, ||x||2 = x∗x =
∑

i |xi|2 is
the Euclidian norm of a vector, the superscript ∗ indicates the complex conjugate
transpose operator, and xcm is the instantaneous center of mass of all agents:

xcm(t) =
1
N

1∗x(t).
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Note that
cx(x) = 0 ⇐⇒ xi = xj , ∀(i, j) = 1, ..., N ⇐⇒ x = x̄1

where x̄ ∈ C, i.e. the cost cx(x) is null if and only if the agents are in the same
location. Note that minimizing this cost does not require that the agents move to
any predefined location, in fact the cost would be null even if x(t) = x̄(t)1, where
x̄(t) ∈ C. This property is rather important since it is possible to independently
design leader-following and rendezvous control algorithms. We also want to penalize
the total agents’ energy expenditure in achieving rendezvousing by using a quadratic
cost cu(x) : CN → R+, where:

cu(u) = r||u||2
where r ∈ R+. The goal is to obtain a (possibly time-varying) feedback control

u(t) = K(t)x(t) (2)

where K(t) ∈ RN×N , which minimizes the expected total cost given by:

JT =JT

(
u(0), ..., u(T−1)

)
=Ex0

[
x∗(T )Πx(T )+

T−1∑
t=0

(
x∗(t)Πx(t)+r||u(t)||2

)]
. (3)

The expectation is performed with respect to the initial position distribution since
each x(t) inside the square bracket is a function of the control input sequence
{u(t)}T−1

t=0 and of the initial position x0 . If we substitute Equation (2) into Equa-
tion (1), we get the closed loop dynamics given by:

x(t + 1) = (I + K(t))x(t). (4)

Despite its simple formulation, the previous problem is rather challenging since
the communication graph among agents imposes some constraints on the choice of
the matrix K(t). In particular if at time t the agent j cannot transmit its position to
agent i, then the ij-th entry of the matrix K must be null, i.e. Kij(t) = 0, since xj(t)
is not available to agent i. This can happen for different reasons such as unreliable
communications links, interference, packet collision, limited communication range
or simply because only a maximum number of packets can be transmitted per unit
time. Therefore, it is useful to define the adjacency matrix E ∈ {0, 1}N×N as
follows:

Eij =
{

1 if agent i receives packet from agent j,
0 otherwise.

The rendezvous control problem can be summarized as follows:

min{K(t)}T−1
t=0

JT

s.t. x(t + 1) = (I + K(t))x(t),
Kij(t) = 0 if Eij(x(t), t) = 0

(5)

where E : RN ×R→ {0, 1}N×N is a function associating an adjacency matrix (and
hence a directed graph) to each state x and each time t. The second constraint
makes the problem highly non-convex and time-varying, in general. Note also that
under the previous formulation the communication graph can depend on agents’
position, or can be time-varying and asymmetric, i.e. it is possible that node j can
transmit its position to node i but not vice versa. Solving the previous problem in
full generality is hopeless. Most of recent work on rendezvous control has concen-
trated on optimizing the rate of convergence with fixed communication topologies,
i.e. K(x, t) = K, where most of the off diagonal entries are null [11][13][30]. In
particular, the goal was to analytically determine the rate of convergence based on
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some a-priori constrains on the structure of K and to optimally design classes of
communication topologies with limited communication requirements. These sets
of problems are rather difficult and often lead to combinatorial optimization prob-
lems. Differently, in [23] the authors considered a feedback matrix dependent on
agents location K(x, t) = K(x); in particular they assumed that the agents can
communicate only with agents which are within a fixed communication range, i.e.
E(x, t) = E(x(t)). This strategy reduces communication burden but cannot guar-
antee convergence of all agents to a common location. With this respect, in [9][18]
it was shown that the agents communication topology needs to form a sufficiently
connected graph within an arbitrary large but finite time interval in order for the
agents to converge to a common location. In other words this means that there
must exist a time interval T ∈ N, such that the graph resulting from the concate-
nation of all adjacency matrices {E(t)}t2

t=t1 , where t2 − t1 ≥ T , is strongly rooted,
i.e. it is a graph where there exists a node that can communicate with all other
nodes with a single hop. Inspired by this result, we propose to consider a stochastic
communication topology, i.e. a time-varying control feedback K(t) where most of
the off-diagonal entries are zeros, i.e. Kij(t) = 0 for most of the indexes i, j, but
on average they are not, i.e. E[Kij(t)] 6= 0, ∀i, j. Moreover, we assume that the
agents can transmit their current position to some other agents, independently of
their relative distance, i.e. we assume they have infinite power antennas. This last
assumption is rather unrealistic, but will allow us to derive close form solutions for
the agents performance. We will come back to this assumption in the Conclusions
section. The randomized communication strategy gives rise on average to a fully
connected graph (actually a complete graph). Our strategy does not satisfy the
condition stated in [9][18] as there is always a small probability that the commu-
nication topology graph is not connected for any arbitrary but finite time interval
T . In other terms, the approach used in [9][18] is a worst-case approach while the
one adopted in this work is probabilistic. In fact, the probabilistic analysis empha-
sizes the advantages of time-varying strategies with respect to static ones, while
the worst-case analysis, though ensuring exponential convergence, provides only
conservative bounds on the convergence rate. Accordingly, we adopt the following
probabilistic definition for stability:

Definition 1. The closed loop system (4) is rendezvous asymptotically mean square
stable if:

lim
t→∞

E[|xi(t)− xj(t)|2] = 0, ∀(i, j) = 1, . . . , N.

The study of mean square behavior is important because it is possible to show,
by using concentration theorems, that the agents reach a consensus almost surely if
they are rendezvous asymptotically mean square stable and their rate of convergence
is close to the one predicted by the mean square analysis [22]. The following lemma
links this definition of rendezvous-stability to the performance cost JT .

Lemma 1. The closed loop system (4) is rendezvous asymptotically mean square
stable if the following limit is finite:

J∞ = lim
T→+∞

JT =
∞∑

t=0

E[x∗(t)Πx(t) + r||u(t)||2].

Proof. If J∞ exists, then also
∑∞

t=0 E[x∗(t)Πx(t)] ≤ J∞ must exist. Since the
sum includes infinite terms, then each term must decrease to zero for the sum to
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be finite. In particular we must have limt→∞ E[x∗(t)Πx(t)] = 0 otherwise we can
find an infinite number of terms in the sum which are greater than a non-negative
number ε > 0 and the sum would therefore diverge. Since 0 ≤ E[|xi(t)− xj(t)|2] ≤∑

i

∑
j E[|xi(t) − xj(t)|2] = 2NE[x∗(t)Πx(t)] for all (i, j, t), then this implies that

limt→∞ E[|xi(t)− xj(t)|2] = 0.

Note that the expectation in the previous definition is performed over all random
variables, possibly including any stochasticity of the gain K(t). In our framework
we quantify information exchange as number of messages received by each agent at
any time step, which corresponds to the non-zero off-diagonal entries of each row
in the adjacency matrix E(t). Therefore our objective is to analyze performance
of rendezvous control as a function of the number of messages exchanged among
agents. To get some more insight about structure of rendezvous control feedback
we study two interesting limiting cases. In the first scenario let us assume that
each agent receives messages from all other agents, i.e. E(t) = 11∗. Therefore
the optimization problem of Equation (5) for the infinite horizon , i.e. T → +∞,
becomes:

min{K(t)}∞t=0
Ex0

[∑∞
t=0

(
x∗(t)Πx(t)+r||u(t)||2

)]

s.t. x(t + 1) = (I + K(t))x(t)
(6)

which is the classic LQ optimal control problem. It is well known that the optimal
feedback gains {Kopt(t)}∞t=0 are static, i.e. Kopt(t) = K∞, and Kopt can be obtained
from the solution of the following algebraic Ricatti equation:

P = P + Π− P (P + rI)−1P, P ≥ 0
Kopt = −(P + rI)−1P.

After some simple matrix manipulations it is possible to show that the previous
equations can be written as

Kopt = −κ̄Π, P = pΠ

where κ̄, p ∈ R satisfy the following scalar Riccati equation:

p = p + 1− p2

p + r
, p ≥ 0 (7)

κ̄ =
p

p + r
. (8)

The feedback control given by Equation (2) can be written as:

u = −κ̄(I − 1
N

11∗)x(t) =⇒ ui = −κ̄(xi − xcm) = −κ̄
1
N

N∑

j=1

(xi − xj).

This means that the optimal strategy of each agent is to move towards the instan-
taneous center of mass. Equivalently, the optimal control is proportional to the
sum of the relative distances with the other agents. Note that this control feedback
is independent of the reference frame, and that x(t) → xcm(0)1, i.e. all agents
converge to the initial agents’ center of mass.

In the second scenario, we assume that no communication is allowed among the
agents, i.e. E = I which gives rise to the following optimization problem:

min{K(t)}∞t=0
Ex0

[∑∞
t=0

(
x∗(t)Πx(t)+r||u(t)||2

)]

s.t. x(t + 1) = (I + K(t))x(t)
K(t) = diag(k1(t), . . . , kN (t))

(9)
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where the last constraint enforces that agents do not communicate. Using symmetry
arguments it follows that the optimal feedback gains {Kopt(t)}∞t=0 are constant and
time independent, i.e. Kopt(t) = koptI, therefore the control feedback can be written
as:

u = −Koptx = −koptx =⇒ ui = −koptxi

which means that the optimal input for each agent is a linear feedback of its own
position with respect to the reference frame. Differently from the fully connected
scenario, here x(t) → 0, i.e. all agents converge to the system origin.

3. LQ-like rendezvous control with mixed feedback. Based on these two sce-
narios and the discussion regarding the randomized communication topology with
limited number of communication messages per unit time, we propose a rendezvous
control strategy where at any time step each agent receives the current location of
some other ν ∈ {0, 1, . . . , N − 1} distinct agents chosen uniformly at random. The
control scheme is a linear feedback with constant gains of its own position with
respect to a predefined fixed location x̄ and the relative distance with the other
visible agents:

ui = −k(xi − x̄)− h

N∑

j=1

Eij(t)(xi − xj) (10)

where k, h ∈ R, x̄ ∈ C, Eij ∈ {0, 1}, Eii = 0, and
∑N

j=1 Eij = ν. The non-
zero Eij(t) correspond to the incoming communication links to agent i from the
other agents at time step t. The control feedback is the sum of two terms: the first
depends only on the system origin and requires no communication, while the second
requires communication but it is independent of the system origin. Therefore, by
appropriately choosing k and h, it is possible to place more weight on one term or
on the other. More compactly, this control scheme can be written as:

u(t) = (hE(t)− (k + νh)I) (x(t)− x̄1) (11)

where E(t) ∼ U(E), i.e. the matrix E is uniformly sampled from a set of matrices
E defined as follows:

E = {E ∈ {0, 1}N×N |E1 = ν1, Eii = 0}. (12)

It is important to remark that, although it is not possible to prove that the random-
ized control strategy is the optimal among all possible strategies having constraints
on the maximum number of messages exchanged among agents, in the two extreme
scenarios where ν = 0 or ν = N − 1, the previous control strategy does give the
optimal solution for the infinite horizon scenario.

Before continuing let us define the matrix Π⊥ as follows:

Π⊥
∆=

1
N

11∗ (13)

which has the following properties:

Π = Π∗ ≥ 0, Π⊥ = Π∗⊥ ≥ 0, Π = Π2, Π⊥ = Π2
⊥,

Π + Π⊥ = I, ΠΠ⊥ = Π⊥Π = 0.
(14)
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Moreover, the matrix E(t) satisfies some properties:

E[E(t)] = νΠ⊥ − ν
N−1Π,

E[E∗(t)E(t)] = ν2Π⊥ + ν(N−ν)
N−1 Π,

E[E∗(t)ΠE(t)] = ν
(
1− ν N−2

(N−1)2

)
Π,

E[E∗(t)Π⊥E(t)] = ν2Π⊥ + ν(N−ν−1)
(N−1)2 Π.

(15)

The derivations of these properties can be found in Lemma 4 present in the Appen-
dix.

Let us consider the total cost JT = JT (k, h, x̄) for fixed control parameters
(k, h, x̄) and finite horizon T , defined in Equation (3), where the parameter r ∈
[0, +∞) tunes the tradeoff between small agents relative distances (r small) and
small input control energy (r large). We can now compute explicitly the cost func-
tion JT (k, h, x̄) using the standard dynamic programming approach based on the
cost-to-go function Vt(x) recursively defined as follows:

VT (xT ) ∆= E[x∗T ΠxT ], (16)

Vt(xt)
∆= E[x∗t Πxt + r||ut||2 + Vt+1(xt+1)] (17)

where we used xt = x(t) to simplify notation.

Theorem 1. Let us consider the cost-to-go function defined in Equations (16) and
(17). Then it can be written as

Vt(xt) = stE[x∗t Πxt] + s⊥t E[(xt − x̄1)∗Π⊥(xt − x̄1)] (18)

where st and s⊥t and nonnegative scalars that can be obtained iteratively for t =
T, . . . , 0 as follows:

sT = 1, s⊥T = 0, (19)[
st

s⊥t

]
= A

[
st+1

s⊥t+1

]
+ b (20)

where the matrix A =
[

a11 a12

a21 a22

]
and the vector b =

[
b1

b2

]
are given by:

A =
[

(1−k−α1h)2+α2h
2 1

N−1 α2h
2

0 (1−k)2

]
; b =

[
1+

(
(k+α1h)2+ N

N−1 α2h
2
)
r

k2r

]
(21)

and the coefficients (α1, α2) are functions of the number of agents N and the number
of received messages ν:

α1 =
νN

N−1
, (22)

α2 =
ν(N − ν − 1)

N − 1
. (23)

Proof. See Appendix.

The previous equations fully determine the cost function in terms of the initial
position distribution of agents x0, feedback gains (k, h), and feedback reference po-
sition x̄. Note that the sequences {st}0t=T and {s⊥t }0t=T are monotonically increasing
since all aij coefficients are positive, therefore the limits limT→∞ s0 and limT→∞ s⊥0
are finite if and only if a11(k, h) < 1, a22(k) < 1 or a11(k, h) < 1, k = 0∗. If these

∗Note that for k = 0, we necessarily have s⊥t = 0,∀t. This case corresponds to the GPS-free

scenario considered in Section VI.
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limits exist, then also the infinite horizon cost exists. We can summarize the results
obtained so far in the following lemma:

Lemma 2. Let us consider the closed loop system defined by dynamics given by
Equation (1) and the randomly switching control feedback specified in Equation (11).
Then, the LQ performance criterion defined by Equation (3), can be written as

JT (k, h, x̄) = s0E[x∗0Πx0] + s⊥0 E[(x0 − x̄1)∗Π⊥(x0 − x̄1)] (24)

where s0 and s⊥0 are nonnegative scalars that can be computed iteratively as indicated
in Equations (19) and (20). If a11(k, h) < 1 and a22(k) < 1 then the infinite horizon
cost J∞ = limT→∞ JT exists and it is given by:

J∞(k, h, x̄; ν, N) = cT (I −A)−1b (25)

where c = [c1 c2]T , c1 = E[x∗0Πx0], c2 = E[(x0− x̄1)∗Π⊥(x0− x̄1)], and A and b as
defined in Equation (21).

Proof. Equation (24) follows directly from Theorem 1 and the fact that JT = V0(x0).
If a11(k, h) < 1 and a22(k) < 1, then it is easy to see that the sequences st and s⊥t are
monotonically increasing and bounded from above, therefore the limits limT→∞ s0 =
s∞ and limT→∞ s⊥0 = s⊥∞ exist and are finite. If we define the new vector s =
[s∞ s⊥∞]T , then the infinite horizon cost can be written as J∞(k, h, x̄) = cT s, where
s must satisfy the equation s = As + b. Finally, since the last equality is equivalent
to s = (I −A)−1b, then a simple substitution gives Equation (25).

It is interesting to note that, although the system is N -dimensional, the per-
formance for fixed control parameters can be obtained by solving two dimensional
linear problems. Also note that the cost J∞(k, h, x̄) is a quadratic function in x̄
and rational in the gains h, k. This rational dependence on h and k does not allow
for a closed form minimization of the cost J∞, as will be shown in the next section.

The total cost is a function of both the number of messages exchanged ν and
the total number of agents N . However, for large numbers of agents the previous
problem simplifies to:

Lemma 3. Let us consider the optimization problem defined in Theorem 1. If
(1 − k − νh)2 + νh2 < 1 and (1 − k)2 < 1, then limN→∞ J∞(k, h, x̄; ν, N) =
J∞(k, h, x̄; ν) = cT (I −A∞)b∞ where

A∞ =
[

(1− k − νh)2 + νh2 0
0 (1− k)2

]
; b∞ =

[
1 +

(
(k + νh)2 + νh2

)
r

k2r

]
.

Proof. The proof follows from the previous Lemma by noting that for fixed ν then
limN→∞ α1 = ν and limN→∞ α2 = ν.

The previous lemma implies that for large number of agents, the optimal gains
h and k are independent of the number of agents N for fixed ν, as long as the ratio
between E[x∗0Πx0] and E[(x0 − x̄1)∗Π⊥(x0 − x̄1)] remains constant.

4. Optimal Infinite Horizon for LQ-like rendezvous control. In this section,
we want to find the optimal values for the control gains k, h and reference location
x̄ that minimize the infinite horizon cost J∞, i.e. we want to solve the following
optimization problem:

Jopt
∞ (ν,N) = min

k,h,x̄
cT (I −A)−1b = mink,h,x̄ J∞(k, h, x̄; ν, N) = cT s, (26)

subject to s = As + b. (27)
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First, note that Equation (27) is independent of x̄, therefore the optimal choice for
x̄ is the value that minimizes c2 = E[(x0 − x̄1)∗Π⊥(x0 − x̄1)], i.e.:

x̄opt = argmin
x̄
E[(x0 − x̄1)∗Π⊥(x0 − x̄1)]

= argmin
x̄
E[x∗0Π⊥x0]− 2x̄∗1∗Π⊥E[x0] + |x̄|21∗Π⊥1

= argmin
x̄
E[x∗0Π⊥x0]− 1

N
|E[1∗x0]|2 + N

∣∣∣∣x̄−
1
N
E[1∗x0]

∣∣∣∣
2

= E
[

1
N

1∗x0

]
= E[xcm(0)]

where xcm(0) is the center of mass of agents at time t = 0. This means that the
optimal reference location to be used in feedback (11) coincides with the a-priori
expected center of mass of all agents.

After this optimization step, the optimization problem defined in Equations (26)
and (27) is equivalent to

Jopt
∞ (ν, N) = mink,h cT s (28)

subject to s = As + b (29)

where we used the facts Πx0 = x0 − xcm(0)1 and Π⊥x0 = xcm(0)1, and the com-
ponents of the cost vector c = [c1 c2] are given by:

c1 = E[||x0 − xcm(0)1||2] =
N∑

i=1

E[|xi(0)− xcm(0)|2], (30)

c2 = N
(
E[|xcm(0)|2]− |E[xcm(0)]|2 )

= Nvar
(
xcm(0)

)
. (31)

It is interesting to note that, differently from the classic LQ control, the optimal gain
k, h depend on the second order statistics of initial agents location. In particular
the term c1 is proportional to the expected spreading of agents initial position with
respect to their initial center of mass, while the second term c2 is proportional to
the expected distance between the actual agents’ center of mass, xcm(0), and its
a-priori value, E[xcm(0)].

The previous optimization problem is highly nonlinear and cannot be solved
in closed form. However, some interesting results can still be inferred, which are
summarized in the following theorem:

Theorem 2. Consider the optimization problem defined by Equations (28) and
(29). Also, consider the corresponding optimal gains hopt(ν, N) and kopt(ν,N) as a
function of ν and N . Also consider the positive scalar c1 and c2 defined in Equations
(30) and (31). Finally let p and κ̄ be defined in Equations (7) and (8). Then the
following statements are true:

(a) Jopt
∞ (ν + 1, N) ≤ Jopt

∞ (ν, N),
(b) Jopt

∞ (0, N) ≤ J∞(κ̄, 0, x̄opt; 0, N) ≤ c1p + c2
pr2

p+2r ,
(c) Jopt

∞ (N − 1, N) = J∞(0, κ̄
N , x̄opt; N − 1, N) = c1p,

(d) c1p ≤ Jopt
∞ (ν, N) ≤ c1p + c2

pr2

p+2r , ∀ν, N ,
(e) c2

c1
→∞ =⇒ kopt(ν, N) → 0, hopt(ν,N) → hopt

k=0(ν,N), ∀ν > 0,
(f) c2

c1
→ 0 =⇒ kopt(ν,N) → κ̄, hopt(ν,N) → 0, ∀ν.

Proof. See Appendix.
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Let us comment upon the previous theorem. Statement (a) claims that if the
number of the exchanged messages increases, then the performance improves, as
expected since more information is available. Statement (b) states that, even when
no communication among agents is available, the total cost is finite and can be
achieved by applying a scalar LQ optimal feedback on the expected center of mass
x̄opt = E[xcm(0)]. Statement (c) shows that in the other extreme situation when
full communication is available, the optimal strategy is to do feedback only on the
relative distances with the other agents and the knowledge of any a-priori statistics
is irrelevant. Statement (d) provides bounds on the performance of the proposed
strategy, and it clearly shows that communication among agents can truly improve
performance only if c2 À c1, i.e. when the uncertainty about the a-priori location
of agents’ center of mass is much larger than the spreading of agents’ initial po-
sitions. This implies that a-priori knowledge about agents’ statistics can greatly
improve the performance of the rendezvous control. Therefore, the common belief
that the algorithms which use only relative distance consensus feedback are more
energetically efficient as compared to a fixed location feedback is not true in general,
since performance depends on statistical distribution of the initial agents’ positions.
Such statistics are often available and it would be suboptimal not to use them. The
last two statements confirm the previous consideration by showing that as c2 grows
much larger than c1, i.e. c2

c1
→∞ , then all weight should be placed on the relative

distance term h (Statement (e)). Conversely, when c2
c1
→ 0, then all weight should

be placed on the fixed a-priori expectation agents’ center of mass (Statement (f)).
Moreover, in the limit c2

c1
→ ∞, i.e. when the uncertainty about the location of

agents’ center of mass is large, we recover that the optimal strategy coincides with
the strategy that uses only relative distance feedback, even when communication
is infrequent, i.e. ν ¿ N . The numerical example in the next section will help to
clarify the statements of the previous theorem.

5. Numerical example. In this section we explore the previous results for a spe-
cific choice of agents initial position distribution. We assume that the initial agents’
positions are i.i.d. and drawn from the following probability distribution:

xi(0) ∼ f(x; µ̄, σ1, σ2) =
∫

µ

f1(x|µ)f2(µ)dµ, i = 1, . . . , N,

f1(x|µ) = N (µ, σ1),
f2(µ) = N (µ̄, σ2)

where µ̄, σ1, σ2 are known parameters, and N indicates the scalar gaussian distri-
bution. In particular, µ̄ represents the a-priori expected value for the agents center
of mass, σ2 is the uncertainty we have about true agents’ center of mass µ, and
σ1 quantifies the spreading of the agents’ position with respect to the true agents’
center of mass. Note that if σ2 = 0, then we recover the usual gaussian distribution
of agents’ position, i.e. xi(0) ∼ N (µ̄, σ1). The distribution above is more general
than the usual gaussian distribution, and allows for the modeling of a larger class
of scenarios. This is a suitable model, for example, if agents are dropped from an
airplane. The agents will land in slightly different positions, however it is generally
possible to estimate their spreading represented by the parameter σ1. Wind, how-
ever, can shift the actual agents’ center of mass from the expected a-priori value
µ̄, but the spreading of the agents among each other, quantified by σ1, is almost
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unaffected. The effect of the wind can be taken into account by associating some un-
certainty on the exact position of the agents’ center of mass through the parameter
σ2.

Besides being useful for some applications, this distribution allows us to derive
explicit values for the parameters c1, c2, x̄opt in the previous section. In fact, the
optimal choice for the parameter x̄opt is given by:

x̄opt = E
[

1
N

1∗x0

]
= E [xi(0)] = Eµ [ E [xi(0)|µ] ] = Eµ[µ] = µ̄.

As expected, the optimal choice for this parameter is exactly the expected a-priori
value of the agents’ center of mass. As for the other two parameters, we have:

c1 = E[||x0 − xcm(0)1||2] = E[||(I − 1
N

11∗)x0||2] = trace(E[Πx0x
∗
0])

= trace(EµΠ[E[x0x
∗
0|µ]]) = trace(Eµ[Π(11∗µ2 + σ2

1I)]) = trace(Πσ2
1)

= (N − 1)σ2
1 ,

c2 = N
(
E[|xcm(0)|2]−|E[xcm(0)]|2)=E[x∗0Π⊥x0]−Nµ̄2 =trace(Π⊥E[x0x

∗
0])−Nµ̄2

= trace(Eµ[Π⊥(11∗µ2+σ2
1I)])σ2

1)−Nµ̄2 = trace(Π⊥(NEµ[µ2]+σ2
1))−Nµ̄2

= N(µ̄2 + σ2
2) + σ2

1 −Nµ̄2 = Nσ2
2 + σ2

1

As expected, the parameter c1, which is related to agents’ spreading, depends only
on σ1, while c2, which quantifies the uncertainty about the a-posteriori agents’ cen-
ter of mass, mainly depends on σ2. Figure 1 presents an intermediate scenario where
c1 = c2, which shows that even a small exchange of information can substantially
improve performance (left panel) and that more weight is placed on the relative
distance feedback as the number of exchanged massages increases (right panel).
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Figure 1. Optimal cost (left) and optimal gains (right) as a func-
tion of exchanged messages ν for N = 10000, r = 2, c1 = c2 = 1.
For this choice of parameters p = 2 and κ̄ = 0.5.

Moreover, according to the analysis in the previous section, if c1 À c2, which in
this case is equivalent to stating that σ1 À σ2, then the performance obtained by
just applying feedback on the expected a-priori center of mass µ̄ with no commu-
nication among agents, given by Jopt(0, N) ≤ c1p + pr2

p+2r c2 (Theorem 2(b)), is not
much worse then the ideal case when full communication graph is available, given
by Jopt(N −1, N) = c1p (Theorem 2(c)). In other words, this states that if we have
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a good estimate of the initial agents’ center of mass xcm(0), it is not necessary to
communicate. This case corresponds to the left side of Figure 2, where kopt ≈ κ̄ and
hopt ≈ 0 (Theorem 2(e)). On the other hand, if σ1 ¿ σ2, which implies c̄1 ¿ c̄2,
then, according to Theorem 2(f), more weight should be placed on the feedback gain
h (which depends on the exchanged information) than the gain k (which depends on
the expected a-priori center of mass), even for low numbers of exchanged messages
ν. This is confirmed in the right side of Figure 2, which corresponds to a scenario
for which there is no a-priori information about the agents’ center of mass.
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Figure 2. Optimal gains kopt and hopt as a function of the ratio
c2
c1

, where limN→∞ c2
c1

= σ2
2

σ2
1
. For c2

c1
→ ∞, then kopt → 0 and

hopt → hopt
GPS−free, while for c2

c1
→ 0 then kopt → κ̄ and hopt → 0.

6. GPS-free rendezvous under randomly switching communication topolo-
gies. It is important to remark that the considerations in the previous section follow
from the assumption that each agent has access to its own position with respect to
a common system origin. This is the case, for example, for mobile agents provided
with GPS-like sensors. Therefore, it might be unfair to compare them with strate-
gies that use only relative distance information. In fact, there are scenarios where
GPS-like sensors are not available or are unreliable such as in indoor or urban en-
vironments. Moreover, we have not yet highlighted the performance improvement
of the proposed randomly switching communication topology with respect to static
communication topologies. Therefore, in this section we analyze the LQ-like total
cost defined in Equation (3) and we set the gain k = 0 in the control feedback of
Equation (10) obtaining the following purely distributed feedback:

u(t) = h (E(t)− I) x(t). (32)
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By using arguments based on the cost-to-go functions similar to Section III, it is
easy to obtain the following theorem.

Theorem 3. Let us consider the closed loop system defined by dynamics given by
Equation (1) and the randomly switching control feedback specified in Equation (32).
Then, the LQ performance criterion CT (h; ν, N) = JT (0, h, x̄; ν, N) defined by Equa-
tion (3), can be written as

CT (h; ν, N) = s0E[x∗0Πx0] (33)

where s0 is a nonnegative scalar that can be computed iteratively as follows:

st = a11(0, h)st+1 + b1(0, h), sT = 1 (34)

where a11, b1 are defined in Equations (20) and (21). If a11(0, h) < 1, then the
infinite horizon cost C∞(h; ν, N) = limT→∞ JT (0, h, x̄; ν, N) exists and it is given
by:

C∞(h; ν, N) =
b1(0, h)

1− a11(0, h)
E[x∗0Πx0]. (35)

Let Copt
∞ (ν, N) = minh C∞(h; ν,N), and hopt(ν, N) the corresponding minimizer,

where we made explicit that these are functions of the number of the exchanged
messages, ν ≥ 1, and number of agents, N . Then we have:

Copt
∞ (ν,N) = sopt

∞ E[x∗0Πx0], (36)

sopt
∞ = 1 + sopt

∞ − (α1s
opt
∞ )2

(α2
1 + α2)s

opt
∞ + (α2

1 + N−1
N α2)r

, (37)

hopt =
α1s

opt
∞

(α2
1 + α2)s

opt
∞ + (α2

1 + N−1
N α2)r

. (38)

For N →∞ the previous equations simplifies to:

sopt
∞ = 1 + sopt

∞ − ν

ν + 1
(sopt
∞ )2

sopt
∞ + r

, (39)

hopt =
1

ν + 1
sopt
∞

sopt
∞ + r

. (40)

Proof. The first part of the proof follows directly from Theorem 1. In fact, if we
set k = 0, then s⊥t+1 = s⊥t . Since s⊥T = 0, it follows that s⊥t = 0,∀t. Therefore
the Equations (20) and (24) simplify to Equations (34) and (33), respectively. If
T →∞, since st is a nonnegative increasing sequence, its limit is finite if and only
if a11(0, h) < 1, otherwise it grows unbounded. Under this condition limT→∞ s0 =
s∞ < ∞. Moreover, it must be true that s∞ = a11(0, h)s∞+b1(0, h), or equivalently
that s∞ = b1(0,h)

1−a11(0,h) from which follows Equation (35).
Now, by standard LQ optimality arguments, it is easy to show that the optimal

hopt must be a minimizer of the right-hand-side of Equation (34) at the optimal
point, i.e. it must satisfy

d

dh

(
a11(0, h)s + b1(0, h)

)∣∣∣
s=sopt

∞ ,h=hopt
= 0.

From this condition follows directly Equation (38). Also by substitution of Equa-
tion (38) into s∞ = a11(0, h)s∞ + b1(0, h) we get the Riccati-like Equation (37).

Finally, the last part of the Theorem follows from the fact that limN→∞ α1 =
limN→∞ α2 = ν and limN→∞ N−1

N = 1.
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The previous theorem states that it is possible to compute the optimal gain and
the corresponding minimal cost by solving a scalar Riccati-like equation given by
Equation (37). Similar to the optimal cost for the general case Jopt(ν, N), it is easy
to show that Copt

∞ (ν, N) ≥ Copt
∞ (ν + 1, N), i.e. the performance increases with the

number of messages. Also it is easy to verify that for ν = N − 1, then sopt
∞ = p,

hopt = κ̄
N , and Jopt

∞ (N − 1, N) = Copt
∞ (N − 1, N), i.e. the optimal strategy for

the two scenarios is the same when the communication graph is fully connected.
The performance of the GPS-free scenario cannot be better than the performance
obtained by the mixed feedback in Section 4, i.e. Jopt

∞ (ν, N) ≤ Copt
∞ (ν, N), as

graphically illustrated on the left panel of Figure 1. However, this gap rapidly
decreases as the number of exchanged massages increases. This is the result of the
randomized strategy that allows for fast spreading of information among all agents.

The rapid increase of performance as a function on the number of exchanged
messages is well illustrated by the special case where r = 0 corresponding to the
scenario which gives the fastest convergence rate. In this case we have that:

r = 0, N →∞ =⇒ sopt
∞ =

ν + 1
ν

, hopt =
1

ν + 1
, a11(hopt, 0) =

1
ν + 1

.

In particular, the rate of convergence, given by the coefficient a11, is indepen-
dent of the number of agents, and even with a single message exchanged per time
step, i.e. ν = 1, the convergence rate is very rapid, since E[||xi(t) − xj(t)||2] ≤
d (a11(hopt, 0))t = d

(
1
2

)t, where d is some positive scalar that depends on the initial
conditions. It can be shown that the exponential convergence is independent of the
number of agents for all values of r and ν, but the proof is not reported here in the
interest of space. This is rather remarkable since, in general, the convergence rate
decreases as the number of agents increases in many classes of fixed communication
graphs, like the circulant graphs [13] or random geometric graphs [21].

7. Conclusions. In this paper, we studied linear feedback strategies for rendezvous
control based on randomized communication protocols. In particular we showed
that prior information about agents initial position distributions can greatly im-
prove performance and reduce the need of information exchange among agents. In
particular, this is the case when the expected distance from agents’ center of mass
and its a-priori estimate is small as compared to the agents spreading distance. In
fact, in this scenario moving toward the expected center of mass is very close to the
optimal strategy.

Another relevant result of this work was to show that randomized communication
requires only a small number of exchanged to achieve high performance. In fact,
even with a single incoming communication message per time step, the convergence
rate does not reduces beyond a certain minimum value even when the number of
agents grows to infinity. This is another example of the so called “small world
effect”, where the average graph distance of any agent pair is small. This suggests
that whenever possible, a randomized communication strategy should be applied to
achieve fast traveling of information through the network.

Many problems still remain unsolved. The most important one is that communi-
cation radius is limited in real mobile robots, while in this work we assumed infinite
communication radius. In fact, it is well known that most rendezvous strategies
where each agent moves toward the center of mass of its neighbors easily lead to
connectivity loss and robots disconnect into separate clusters [23]. One avenue
of research in this respect would be the integration of randomized communication
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strategies with the use of motion strategies that preserve communication connec-
tivity among agents similarly to [24].

Appendix.

Lemma 4. Let the matrix E(t) uniformly randomly chosen from the set E defined
in Equation (12). Then it has the following properties:

1. E[E(t)] = νΠ⊥ − ν
N−1Π,

2. E[E∗(t)E(t)] = ν2Π⊥ + ν(N−ν)
N−1 Π,

3. E[E∗(t)Π⊥E(t)] = ν2Π⊥ + ν(N−ν−1)
(N−1)2 Π,

4. E[E∗(t)ΠE(t)] = ν
(
1− ν N−2

(N−1)2

)
Π.

Proof. 1) We start by indicating the i− j element of the matrix E with the letter
Eij . The matrix E has the property that:

P[Eij = 1] =
{

0, i = j,
ν

N−1 , i 6= j.

Therefore we have:

E[E] = P[Ejj = 1]I+P[Eij = 1, i 6= j](11∗−I) =
ν

N − 1
(11∗−I) = νΠ⊥− ν

N − 1
Π

where we use the facts 11∗ = NΠ⊥ and I = Π + Π⊥.
2) Observe that, since each row of E(t) is i.i.d. by construction, then the matrix

E[E∗(t)E(t)] must have the same value on the diagonal terms and the same value
on the off-diagonal terms, therefore it can be written as E[E∗(t)E(t)] = αΠ⊥+βΠ,
where α and β are scalars. Using this representation we can also show that:

αΠ⊥=E[E∗E]Π⊥=E[E∗E
1

N
11∗]=E[E∗ ν

N
11∗]=E[E∗]νΠ⊥ =

(
νΠ⊥− ν

N−1
Π

)
νΠ⊥=ν2Π⊥

where we used the fact that Π2
⊥ = Π⊥ and Π⊥Π = 0. Therefore α = ν2. Also note

that a generic term on the diagonal can be written as:

E[E∗E]ii =[αΠ⊥ + βΠ]ii =
α

N
+

β(N−1)
N

from which it follows:

β =
N

N−1
E[E∗E]ii− 1

N−1
α =

N

N−1
E[E∗E]ii − ν2

N−1
.

We now compute a generic term on the diagonal:

E[E∗E]ii =E[
N∑

j=1

E2
ji]=

N∑

j=2

E[E2
ji] =

N∑

j=2

E[Eji]=
N∑

j=2

P[ej1 = 1]=(N−1)
ν

N−1
=ν.

If we substitute this value into the previous equation we find β = ν(N−ν)
N−1 .

3) The computation of E[E∗Π⊥E] follows along the same lines of the previous
point. First of all it is easy to check that also in this case α = ν2. Then the generic
diagonal term is given by:
E[E∗Π⊥E]ii =E[E∗ 1

N
11∗E]ii =

1
N
E[

∑
j,k EjiEki]=

1
N

(∑
j 6=k E[Eji]E[Eki]+

∑
j E[Ejj ]

)

= 1
N

(
(N2 − 3N + 2) ν2

(N−1)2
+ (N − 1) ν

N−1

)
= 1

N

(
ν2 N−2

N−1
+ ν

)
.

Similar to the previous point, it can be shown that β = N
N−1E[E∗Π⊥E]ii − ν2

N−1 =
ν(N−ν−1)

(N−1)2 .
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4) Finally, the last matrix E[E∗ΠE] can be readily obtained by observing that,
from Π⊥+Π = I, it also follows that E[E∗Π⊥E]+E[E∗ΠE] = E[E∗E], from which
we have:

E[E∗ΠE] = (ν2 − ν2)Π⊥ +
(

ν(N−ν)
N−1 − ν(N−ν−1)

(N−1)2

)
Π = ν

(
1− ν N−2

(N−1)2

)
Π .

Proof of Theorem 1. The claim is clearly true for t = T , where sT = 1 and s⊥T = 0.
We can prove our claim for all other time steps t by induction. To simplify notation
we define the following change of coordinate system:

z = x− x̄1

therefore the dynamics of the system and the cost-to-go can be written as:

ut = (−(k + νh)I + hEt)zt

zt+1 = ((1− k − νh)I + hEt)zt

Vt(xt) = stE[(zt + x̄1)∗Π(zt + x̄1)] + s⊥t E[z∗t Y⊥zt]

= stE[z∗t Πzt] + s⊥t E[z∗t Y⊥zt]
= Vt(zt)

where we used the fact that Π1 = 0. Let us suppose that the claim is true for t+1,
then we want to show that the claim is true also for time t.

Vt(zt) = E[z∗t Πzz + r||ut||2 + Vt+1(zt+1)]

= E[z∗t Πzt + r||ut||2 + st+1z
∗
t+1Πzt+1 + s⊥t+1z

∗
t+1Π⊥zt+1]

= E[z∗t Πzt] + rE[z∗t (hEt − (k + νh)I)∗(hEt − (k + νh)I)zt||2] +

+st+1E[z∗t
(
hEt + (1− k − νh)I

)∗
Π

(
hEt + (1− k − νh)I

)
zt] +

+s⊥t+1E[z∗t
(
hEt + (1− k − νh)I

)∗
Π⊥

(
hEt + (1− k − νh)I

)
zt]

= E[z∗t Πzt] + r E
[
z∗t

(
h2E[E∗

t Et]− 2h(k + νh)E[Et] + (k + νh)2I
)
zt

]
+

+st+1 E
[
z∗t

(
h2E[E∗

t ΠEt] + 2h(1− k − νh)ΠE[Et] + (1− k − νh)2Π
)
zt

]
+

+s⊥t+1 E
[
z∗t

(
h2E[E∗

t Π⊥Et] + 2h(1− k − νh)Π⊥E[Et] + (1− k − νh)2Π⊥
)
zt

]

= E[z∗t Πzt] + rE
[
z∗t

(
h2(ν2Π⊥ +

ν(N − ν)

N − 1
Π)− 2h(k + νh)(νΠ⊥ − ν

N − 1
Π) +

+(k + νh)2(Π + Π⊥)
)
zt

]
+ st+1 E

[
z∗t

(
h2

(
ν − ν2 N − 2

(N − 1)2

)
Π +

+2h(1− k − νh)Π(νΠ⊥ − ν

N − 1
Π) + (k + νh)2Π

)
zt

]
+

+s⊥t+1 E
[
z∗t

(
h2(ν2Π⊥ +

ν(N − ν − 1)

(N − 1)2
Π) +

+2h(1− k − νh)Π⊥(νΠ⊥ − ν

N − 1
Π) + (k + νh)2Π⊥

)
zt

]

= E[z∗t Πzt]
(
q + rh2(

ν(N−ν)

N−1
+2

ν2

N − 1
+ν2)−2rkh(

ν

N−1
+ν)+rk2+

+st+1h
2(ν−ν2 N−2

(N−1)2
+2

ν2

N−1
+ν2)+2st+1(1−k)h(

ν

N−1
+ν)+st+1(1−k)2+

+s⊥t+1h
2 ν(N − ν − 1)

(N − 1)2

)
+E[z∗t Π⊥zt]

(
ν2h2−2νh(1− k)−2ν2h2+(1−k)2 +

+2νh(1− k) + ν2h2
)
(r + s⊥t+1)
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where we used the fact that Et is independent of zt. Finally, by substituting back
z = x− x̄1 and using once again the fact Π1 = 0, we prove the theorem claim. ¥

Proof of Theorem 2. To simplify the following derivations we adopt the following
notation Jopt

ν = Jopt(ν,N), hopt
ν = hopt(ν, N) and similarly for kopt

ν , sopt
ν , s⊥ν

opt.
(a) Let us consider the first element in the vector in right hand side of Equa-

tion (27) evaluated at the minimum cost, which can be written as:

sopt
ν = (1−kopt

ν −b1(ν)hopt
ν )2sopt

ν +(kopt
ν +b1(ν)hopt

ν )2r+(sopt
ν +

1

N−1
s⊥ν

opt
+

N

N−1
r)b2(ν)(hopt

ν )2

where we made explicit the dependence on the number of exchanged messages ν.
Let us choose kν+1 = kopt

ν and hν+1 = ν
ν+1hopt

ν , then s⊥ν+1 = s⊥ν
opt and

sopt
ν = (1− kopt

ν − b1(ν)hopt
ν )2sopt

ν + (kopt
ν + b1(ν)hopt

ν )2r +

+
(
sopt

ν +
1

N − 1
s⊥ν

opt
+

N

N − 1
r
)
b2(ν)(hopt

ν )2

= (1−kν−b1(ν + 1)hν+1)
2sopt

ν +(kν+1+b1(ν + 1)hν+1)
2r+

(
sopt

ν + +
1

N − 1
s⊥ν+1+

N

N−1
r
) (ν + 1)(N−1−ν)

ν(N−1−ν−1)
b2(ν + 1)h2

ν+1

≥ (1−kν−b1(ν + 1)hν+1)
2sopt

ν +(kν+1+b1(ν + 1)hν+1)
2r+

+
(
sopt

ν +
1

N − 1
s⊥ν+1+

N

N − 1
r
)
b2(ν + 1)h2

ν+1 = φ(sopt
ν )

where φ() is a linear monotonically increasing operator for fixed hν+1, kν+1, s
⊥
ν+1,

i.e. x1 ≥ x2 ⇒ φ(x1) ≥ φ(x2). This implies that, if we set x0 = sopt
ν and define

xn+1 = φ(xn), then xn+1 ≤ xn for all n. Since this sequence is monotonically
decreasing and bounded from below, as φ(x) ≥ 0 for all x ≥ 0, this implies that
limn→∞ xn = x̄ ≥ 0, where x̄ is also the unique fixed point of x̄ = φ(x̄). Note that
sopt

ν = x0 ≥ x̄ = sν+1, therefore this implies that

Jopt
ν = Jν(kopt

ν , kopt
ν , x̄opt) = c1s

opt
ν + c2s

⊥
ν

opt

≥ c1sν+1 + c2s
⊥
ν+1 = Jν+1(kopt

ν ,
ν

ν + 1
hopt

ν , x̄opt)

≥ min
hν+1,kν+1

Jν+1(kν+1, kν+1, x̄
opt, x0) = Jopt

ν+1.

(b) If we set ν = 0 the optimization problem simplifies to:

Jopt
0 = min

k,h
J0(k, h, x̄opt) = sc1 + s⊥c2

subject to s = 1 + (1− k)2s + k2r,

s⊥ = (1− k)2s⊥ + k2r.

If we set k = κ̄, then s = p. Since s⊥ = kr2

2−k , if we substitute k = κ̄ = p
p+r , then we

get s⊥ = pr2

p+2r . This gain choice is not necessarily optimal, therefore we have

Jopt
0 ≤ J0(κ̄, 0, x̄opt, x0) = c1p + c2

pr2

p + 2r
.

(c) If we set ν = N − 1 the optimization problem simplifies to:

Jopt
N−1 = min

k,h
JN−1(k, h, x̄opt, x0) = sc1 + s⊥c2

subject to s = 1 + (1− k −Nh)2s + (k + Nh)2r,

s⊥ = (1− k)2s⊥ + k2r.
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If we define the new variable ξ = k+Nh it is clear that the first constraint equation
is independent from the second, therefore they can be minimize separately. The
second constraint is minimized for kopt

N−1 = 0 which implies s⊥ = 0. Therefore, the
optimization reduces to minimize s subject to s = 1 + (1−Nh)2s + (Nh)2r which
is obtained by setting Nhopt

N−1 = κ̄ from which it follows s = p, which concludes the
proof.

(d) This statement follows directly from statements (a),(b) and (c).
(e) Without loss of generality we can set c1 = 1 and let c2 →∞. We claim that

s⊥ → 0. In fact if this is not the case, then there exist a sequence of {c2n}∞n=1

such that c2n → ∞ and the corresponding s⊥ ≥ ε > 0. This means that also
Jopt ≥ c2ε → ∞. This is not possible since if we choose k = 0, then s⊥ = 0, and
also we have s < ∞ for any ν > 0, which implies that the corresponding cost is
finite, i.e. J < ∞. Since Jopt ≤ J < ∞, then s⊥ → 0 for c2 →∞. However s⊥ → 0
if and only if k → 0, therefore kopt

ν → 0 for all ν. By continuity it follows that
hopt

ν → hopt
ν,k=0, i.e. the optimal choice of h when setting k = 0. This scenario is

considered in Section 6.
(f) The proof is similar to the previous point. Without loss of generality we set

c2 = 1 and let c1 → ∞. We claim that sopt
ν → s̄, where s̄ = minh,k sν(h, k),

which is achieved for hν = 0 and kν = κ̄ and gives s̄ = p, s⊥ν = r2p
p+2r and

Jν(κ̄, 0) = c1p + c2
r2p

p+2r = c1p + r2p
p+2r . If sopt

ν → s̄ is not true, then there exist
a sequence {c1n}∞n=1 and a positive scalar ε > 0, such that sopt

ν ≥ p + ε. The corre-
sponding optimal cost is given by Jopt

ν = c1nsopt
ν +s⊥ν ≥ c1n(p+ε). Then, there exists

n̄ such that c1nε > (p−1) for all n > n̄. This implies that Jopt
ν ≥ c1n(p+ε) > Jν(κ̄, 0)

for n > n̄, which is a contradiction since Jopt
ν ≤ Jν(k, h) for all k, h. Therefore, the

claim that sopt
ν → s̄ = p is true. This also implies that kopt

ν → κ̄ and hopt
ν → 0 for

all ν ≥ 0, which concludes the proof. ¥
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