
Automating data citation: the eagle-i experience

Abdussalam Alawini
University of Pennsylvania

Philadelphia, PA
alawini@seas.upenn.edu

Leshang Chen
University of Pennsylvania

Philadelphia, PA
leshangc@seas.upenn.edu

Susan B. Davidson
University of Pennsylvania

Philadelphia, PA
susan@cis.upenn.edu

Natan Portilho Da Silva
Feevale University

Novo Hamburgo, Brazil
natanportilho@outlook.com

Gianmaria Silvello
University of Padua

Padua, Italy
silvello@dei.unipd.it

ABSTRACT
Data citation is of growing concern for owners of curated
databases, who wish to give credit to the contributors and
curators responsible for portions of the dataset and enable
the data retrieved by a query to be later examined. While
several databases specify how data should be cited, they
leave it to users to manually construct the citations and do
not generate them automatically.

We report our experiences in automating data citation for
an RDF dataset called eagle-i, and discuss how to generalize
this to a citation framework that can work across a variety
of different types of databases (e.g., relational or XML).

1. INTRODUCTION
An increasing amount of information is being stored in

structured databases and retrieved using queries. Since much
of the information in these databases is contributed by mem-
bers of the community and curated by experts, there is in-
creasing interest in understanding how to cite the result of
a query and give credit to the people or organizations who
were responsible for it. Currently, database administrators
(DBAs) create web pages for frequent queries — portions of
the database that are frequently retrieved by users— and de-
scribe (in English) what “snippets” of information are to be
included in a citation for information displayed in such web
pages. This is the case for the Reactome Pathway database 1

as well as eagle-i 2, however neither of these databases auto-
matically generate the citations and return them to the user.
A notable exception to this is the IUPHAR/BPS Guide to
Pharmacology 3 in which the citations for specific web-page
views of the database are hard-coded in the web page re-

1http://www.reactome.org/pages/documentation/citing-
reactome-publications/
2https://www.eagle-i.net/get-involved/for-
researchers/citing-an-eagle-i-resource/
3http://www.guidetopharmacology.org/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

JCDL ’17 Toronto, Canada
c© 2017 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

sults. However, none provide a citation for general queries,
i.e. free queries submitted to the database by users via web
forms or APIs which do not correspond to predefined web
page views (frequent queries) of the database.

Dealing with general queries is especially hard because,
unlike traditional publications which have a fixed granular-
ity to which citations can be attached (e.g. a paper in a
conference proceedings, or chapter in a book), the granular-
ity of data varies when retrieved by a query over a database.
Since there are a potentially infinite number of queries, each
accessing and generating different subsets of data, it is im-
possible to explicitly attach a citation to every possible re-
sult set and/or query. Instead, we must find ways of speci-
fying citations for portions of the database which represent
frequent queries (e.g. web page views), and use these to
automatically construct citations for data returned by more
general queries. There is therefore an interesting connection
between data citation and the problem of query rewriting
using views [20], as observed in [9].

A first step in obtaining a solution to this problem is to
develop an approach for specifying the frequent queries as
well as how to construct citations to those queries. In [13]
we introduce a notion of citation views in the context of rela-
tional databases, and show how they can be used to specify
frequent queries as well as how to obtain the snippets of in-
formation that are to be included in the citation. In this
paper, we discuss how citation views can be specified in the
context of RDF databases4, and describe the implementa-
tion of an automatic citation generator for frequent queries
against the eagle-i database.

The eagle-i database is a “resource discovery” tool built
to facilitate translational science research which allows re-
searchers to share information about resources. Resources
are added to the database by project participants through
data entry screens, with required and optional fields which
depend on the type of the resource (e.g. cell lines, software,
...). A resource is later retrieved in response to a query on
the eagle-i id of the resource or via keyword search, and
the information displayed as a web page. Embedded in the
web page is a button saying “Cite this resource”. When
this button is clicked, the system returns the eagle-i id of
the resource (which is the URI of the resource in the RDF
graph), and describes (through yet another click yielding a
web page) what snippets of information on the original web
page should be put in a citation for the resource. Users must

4https://www.w3.org/RDF/

RDF
Citation
Modeleagle-i id

Citation
Formatter

machine-readable
citation (JSON)

Human-readable citation

eagle-i
triple store

eagle-iV
versioning

system

Citation Generator

Versioning Manager Dereferencing
Module machine-readable

citation (JSON)

Citation
Parser

Original cited object

Citation Dereferencer

Grant, G.,Lazar, M.l and Manduchi, E.,
Significance Tester,
University of Pennsylvania,
version v2,
http://www.cbil.upenn.edu/STAR/

eagle-i system

Figure 1: Citation framework for eagle-i.

then construct citations manually.
Clearly, since eagle-i is stored as an RDF dataset, the

snippets of information to be included in the citation for
a resource can be easily retrieved using SPARQL [7], the
W3C standard query language for RDF data 5. We therefore
developed a prototype which, given a resource identified by
its eagle-i id, obtains the necessary snippets and renders
the citation in a number of different formats, e.g. human
readable, BibTex, XML or RIS. Users can then copy-paste
the appropriate format to the bibliography generator of their
choice.

However, SPARQL is not straightforward to use as a spec-
ification language for citation views, if the ultimate goal is
to be able to generate citations for general queries. In this
paper, we therefore propose to use (positive) Datalog [3]
as the model and specification language for RDF citation
views, and show that they can be easily implemented using
SPARQL. DBAs can use a graphical user interface (GUI) to
define citation views. In fact, we have experience in develop-
ing such interface for specifying citation views for relational
databases.

Unfortunately, since eagle-i is not versioned, when a cita-
tion is “dereferenced” the latest version of the resource will
be obtained rather than the original version referenced by
the citation; thus, there is no guarantee of fixity. We there-
fore developed a versioning system for eagle-i which, given
an eagle-i id and time of access, returns the appropriate ver-
sion of the resource.

In this paper, we discuss our experiences in automating
citation for eagle-i resources (see Figure 1). When a user
clicks the “Cite this resource” button of an eagle-i resource,
the eagle-i id of the resource is passed to the Citation Gener-
ator module, which gathers the necessary snippets of infor-
mation from the underlying eagle-i (RDF) triple-store and
generates a citation in JSON (JavaScript Object Notation)
format. The JSON object can then be rendered in a vari-
ety of formats (e.g. human readable, XML, RIS, BibTex...).
When another user wants to “dereference” that citation, the
Citation Dereferencer Module obtains the correct version of
the cited eagle-i resource from the Versioning Manager mod-
ule and returns it to the user.

5https://www.w3.org/TR/rdf-sparql-query/

We also discuss how this framework can be reused for au-
tomating data citation across a variety of different database
models, e.g. RDF, relational and XML. This is enabled by
using Datalog [3] as the specification language for citation
views. Datalog is an elegant formalization which can be
used to capture the core of many query languages for re-
lational, graph-based, and semi-structured data. In partic-
ular, it has been used to model and study the expressive
power of SPARQL [7].

The rest of the paper is organized as follows: Section 2
presents our model of citation views by showing how to spec-
ify eagle-i citations in Datalog, and discussing the transla-
tion to SPARQL. Section 3 discusses the problem of fixity,
and presents our RDF versioning system. Section 4 discusses
problems encountered in using standards such as BibTex,
RIS or DataCite’s XML for eagle-i citations, and argues the
need for flexible formats. After discussing related work in
Section 5, we describe a general framework for automating
data citation in Section 6, discussing the steps that database
owners must take to use the framework. Finally, we conclude
and outline future work in Section 7.

2. MODEL AND IMPLEMENTATION
Eagle-i is a resource discovery tool which allows users to

search for resources by keywords, and displays information
about a resource of interest (identified by its eagle-i id) as a
web page. Resources fall into about 20 top-level categories,
such as software, mice, cell lines, and core facilities. Each
resource is a citable object, and the content of the citation
depends on the category of the resource. Thus the frequent
queries to the database are selecting a resource based on its
eagle-i id and displaying the web-page view according to the
category of the resource. The citation views for eagle-i are
formed around these frequent queries, one for each top-level
category of resource.

In this section, we show how to use Datalog as the spec-
ification language for citations views in eagle-i, discuss how
they were then implemented in our prototype system, and
discuss how Datalog can be used to reason about citations
for general queries, i.e. those that go beyond the frequent
queries used to specify citation views.

2.1 Model

We start by describing how to capture an RDF database
as a set of Datalog facts and then use Datalog rules to specify
citations views. A Datalog rule is an expression of form

R1(u1) : −R2(u2), ..., Rn(un)

where n ≥ 1, the Ri’s are predicates, and the ui’s are tuples
of appropriate arities. The head of the rule, R1, is on the left
of the“if” sign : −, and the body of the rule, composed of one
or more subgoals, is on the right side. The interpretation of
such a rule is that whenever there is a binding of values to
variables in u2, ..., un that makes each Ri true (conjunctive
semantics), then R1(u1) must also be true.

2.1.1 RDF facts and inference
An RDF graph is a set of subject-predicate-object triples,

where the elements may be IRIs (Internationalized Resource
Identifiers), blank nodes, or data-typed literals. A fragment
of RDF related to an eagle-i resource is shown below, where
rdfs:subClassOf, rdfs:type, and rdfs:label are built-in
predicates.

<ont: t1> <rdfs:label> <"Software">
<ont: t2> <rdfs:label> <"Software component">
<ont: t3> <rdfs:label> <"Algorithmic component">
<ont: t2> <rdfs:subClassOf> <ont: t1>
<ont: t3> <rdfs:subClassOf> <ont: t2>

<eagle-id: e1> <rdfs:type> <ont: t3>
<eagle-id: e1> <Name> <Significance Tester>
<eagle-id: e1> <Developer> <Grant, G.>
<eagle-id: e1> <Developer> <Lazar, M.l>
<eagle-id: e1> <Developer> <Manduchi, E.>
<eagle-id: e1> <Org> <UPenn>
<eagle-id: e1> <URL> <http://www.cbil.upenn.edu/STAR/>

The first five triples define (a portion of) the resource
type ontology related to software. The next seven triples
define the eagle-i resource with id “e1”, which is an “Algo-
rithmic component” (which is, more generally, “Software”).
This dataset can be represented as a set of facts, where the
subject and object become arguments to the predicate. For
example,

<ont: t2> <rdfs:subClassOf> <ont: t1>

would become

rdfs:subClassOf(‘ont: t2’, ‘ont: t1’)

By convention, the built-in predicate rdfs:subClassOf is
transitive, i.e. if x is a subclass of y and y is a subclass
of z, then x can be inferred to be a subclass of z. This
can be captured using Datalog by defining an intensional
database predicate subClassOf* which is recursively derived
from rdfs:subClassOf as follows:

subClassOf*(x, y):- rdfs:subClassOf(x,y).
subClassOf*(x, z):- subClassOf*(x,y),

subClassOf*(y,z).

Using these two rules on the RDF instance given above,
we could infer the following:

subClassOf*(‘ont: t2’, ‘ont: t1’).
subClassOf*(‘ont: t3’, ‘ont: t2’).
subClassOf*(‘ont: t3’, ‘ont: t1’).

Additional information may also be needed for inclusion in
a citation. For example, the database as a whole may have a
standard reference to the literature (e.g. [34]), or there may
be a current version number or timestamp included to ensure
fixity. We model this using the predicate MetaData(x, y), a
“key-value” store in which x is the key and y is the value.

2.1.2 Citation Views
Citation views have three components: a view query, a

citation query and a citation function. View queries define
citable portions of the database; collectively, they represent
some portion of the expected query workload. Each view
has an associated citation query, which obtains the snippets
of information to be used in a citation. The output of the
citation query is then used by a citation function to format
the snippets to create the final citation.

Both the view and citation query are expressed as Datalog
queries, optionally parameterized by one or more variables.
The effect of the parameters is to define separate views for
each binding of parameters to values, and therefore gener-
ating different citations. For example, a citation in eagle-i
is associated with an individual resource, and therefore the
view definitions (and corresponding citation queries) are pa-
rameterized by the resource identifier (the eagle-i id). The
snippets of information captured in a citation depends on
the category of the resource, therefore a different view is
defined for each category of resource.

As an example, views for software (SW) and cell line (CL)
would be defined as follows. The views are parameterized
by the resource identifier, indicated by the term λ(r):

λ(r)VSW (r) :- rdfs:Type(r,t), SubClassOf*(t,s),
rdfs:Label(s,"Software")

λ(r)VCL(r) :- rdfs:Type(r,t), SubClassOf*(t,s),
rdfs:Label(s,"Cell Line")

The view query tests for the top-level class of the category
of the resource r (SubClassOf*). If it is“Software”then VSW

is used; similarly, if it is “Cell Line” then VCL is used (and
so on for the other categories).

Given the view that the resource matches, a different ci-
tation is specified. The citation for a software resource in-
cludes the software name, optional software version number,
optional developer name(s), optional team name, and op-
tional owning organization name. We extend this to include
the version number of the database to enable fixity. The
citation query for software obtains the necessary snippets as
follows:

λ(r)CSW (r,s,v,d,t,o,u,y) :- Name(r,s), SoftVersion(r,v)?,
Developer(r,d)?, Team(r,t)?,
Org(r,o)?, URL(r,u),
MetaData("Version", y)

Note that we have extended the syntax of Datalog slightly
to reflect the optional snippets (indicated by ?), adopting
an outer-join semantics rather than a join semantics.6 The
result of CSW for the RDF fragment above, assuming the
current database version to be V12, is shown in Table 1.

The citation function could then format this information
in JSON as follows:

{eagle-id:"eagle-id: e1", db-version: "V12",
name:"Significance Tester",
developers:{"Grant, G.","Lazar, M.l", "Manduchi, E."},
url:"http://www.cbil.upenn.edu/STAR/"}

The citation query of a cell line resource would be slightly
different to reflect the necessary snippets for that resource

6This can be modeled as a set of Datalog clauses, one for
each optional predicate. Details are omitted for simplicity.

r s v d t o u y
eagle-id: e1 Significance Tester Grant, G UPenn http://www.cbil.upenn.edu/STAR/ V12
eagle-id: e1 Significance Tester Lazar, M.l UPenn http://www.cbil.upenn.edu/STAR/ V12
eagle-id: e1 Significance Tester Manduchi, E. UPenn http://www.cbil.upenn.edu/STAR/ V12

Table 1: Result of CSW

e1

e2 e3

e4 e5

e6
e7

e8

e9

e10

pypz

pz

py

pz

py

px

px
px

px

py

py

pz

VSW(e1)

Resource to be cited: e1 check type

citation query
parametrized by e1 CSW(e1,s,v,d,t,o,u)

Citation
Function

{eagle-id: “eagle-id: e1'', dv-version: "V12”,
name: `”Significance Tester'',
developers: {“Grant, G.'', “Lazar, M.l'', “Manduchi, E.''},
url: “http://www.cbil.upenn.edu/STAR/ '' }

Final citation

Figure 2: Components of the citation model and
example of citation for resource e1.

category, e.g. the cell line name, resource type, optional
other resource identifiers, and owning organization name.

Figure 2 illustrates how the three components of the cita-
tion model interact with one another. In this RDF graph,
nodes are resources, other IRI’s, or literals, and edges are
properties. The two parameterized views described above,
VSW and VCL, partition the RDF graph into subgraphs rep-
resenting individual resources; for sake of illustration, we
have extended the original RDF dataset to include a cell
line resource, e4. Given an input eagle-i id e1, we check
the category of the resource and find that it matches the
view λ(e1)VSW , with associated citation query λ(e1)CSW ;
note that CSW is parametrized by the resource e1. Finally,
the query is evaluated and the result set is processed by the
citation function, which produces a citation in JSON.

2.2 Implementation
There is an easy translation from this extension of Data-

log into SPARQL queries. For example, the citation query
CSW shown above, would be translated into the following
SPARQL query to retrieve the necessary snippets of infor-
mation from the underlying eagle-i dataset:

SELECT ?name ?version ?developer ?team ?org ?url
WHERE {
<eID> rdfs:label ?name.
<eID> owl:has_url ?url.
OPTIONAL{<eID> owl:has_version ?version}
OPTIONAL{<eID> owl:has_developer ?developerURI.

?developerURI rdfs:label ?developer}
OPTIONAL{<eID> owl:has_team ?teamURI. ?teamURI

rdfs:label ?team}
OPTIONAL{<eID> owl:located_in ?organizationURI.

?organizationURI rdfs:label ?org}
}

In our eagle-i citation framework, the view and citation
queries stored as SPARQL queries. The framework is shown
in Figure 1, and consists of three components: Citation Gen-
erator, Citation Dereferencer and Versioning Manager.

Given an eagle-i id <eID> (an instance of the term λ(r)
described above), the RDF Citation Model issues the stored
SPARQL view query to determine the category of the re-
source. The stored citation query for that category of re-
source is then executed with parameter <eID> to retrieve
the necessary snippets of information from the underlying
eagle-i dataset. Finally, the Citation Model generates the
citation as a JSON object (as shown in Section 2.1.2), and
passes it to the Citation Formatter module. Based on the
user’s preference, the citation formatter can then render the
JSON object as a human readable, XML, RIS or BibTex
object.

2.3 Discussion
We chose Datalog as a specification language for citation

views since it captures the core of many query languages
and can therefore be used with a variety of different types of
database systems. Our experience with eagle-i and several
other biomedical databases also shows that it is sufficiently
expressive to capture the type of views to which citations are
attached: conjunctive queries, also known as select-project-
join-union (SPJU) queries.

However, from a user perspective, a more intuitive, user-
friendly API, which compiles into Datalog as an intermedi-
ate language could be developed. We have, in fact, devel-
oped such API for specifying citation views over relational
databases. DBAs use this API—a QBE-like (query by ex-
ample) graphical user interface for building queries—to con-
struct citation views that are compiled into Datalog, which
can then be converted into SQL. We can reuse this API for
building citation views for RDF datasets, and update the
API so that it compiles Datalog into SPARQL queries.

Datalog also has a very well-developed theory, and has
been extensively used in the context of problems such as
query optimization, maintenance of physical data indepen-
dence, and data integration [14, 20, 23]. In particular, the
notion of query rewriting using views, which is at the cen-
ter of these problems, can be used to construct citations for
general queries. Here the problem is: Given a set of view
queries V1, ..., Vn and general query Q, can Q be rewritten
to an equivalent query Q′ in terms of a subset of V1, ..., Vn?

3. FIXITY
Fixity is a crucial requirement for accurate data citation.

It ensures that when a citation is dereferenced, the version
of the data as of the time of citation becomes available to
the reader. However, eagle-i does not currently guarantee
fixity since only the latest version of the database is visible;
cited data may therefore have changed or become unavail-
able when the citation is dereferenced. We therefore de-
veloped a web service for versioning eagle-i datasets called
eagle-iV.

In this section, we describe how eagle-iV is implemented,
what happens when a citation is dereferenced, and discuss
performance considerations.

ID subject predicate object resource_type

1 eagle-id:	e1 Developer Manduchi,	E eagle-i
2 ont:	t1 rdfs:label Software ontology

3 eagle-id:	e2 Developer Grant,	G. eagle-i

ID version_
start_date

version_
end_date

1 08/04/2016 12/30/2016
2 09/10/2016 12/30/2016

12/31/2016

2 08/15/2016 09/05/2016
3 12/31/2016 12/31/2016

First triple	to	be	versioned:	
<eagle-id:	e2>		<Developer>		<Grant,	G.>

1

triple_store

triple_log

2

Not	found

Insert	
the	new	triple

3

Second triple	to	be	versioned:
<ont:	t1>		<rdfs:label>		<Software>	

1

2
Found

Find	the	record	with	id	
2		that	has	the	max	
version_end_date

ver_end_date
==	last	

version	date?

3

Yes

Set	version_end_date
to	today’s	date

4

No

Insert	a	new	log	
record	for	ID	2

Last	version	date:	12/30/2016
Today’s	date:	12/31/2016

Figure 3: An example of versioning two RDF triples using eagle-iV

3.1 eagle-i Versioning Service
Although there has been quite a bit of research on ver-

sioning RDF data sources,we were unable to find an RDF
versioning tool that could be easily integrated with eagle-i.
The difficulties were that: i) most systems do not provide a
standard interface for integrating with existing repositories;
ii) some systems, such as SemVersion [35], are discontin-
ued; and, iii) several systems, including R&Wbase [29] and
R43ples [17], do not support time queries [24], which we
discuss below. We therefore decided to implement a new
versioning system for eagle-i, building on previous ideas.
The prototype system is currently limited to a subset of
the eagle-i institutions (Dartmouth University, University
of Pennsylvania, Harvard University and Howard Univer-
sity), although it is straightforward to expand it to include
all institutions.

When a new version becomes available, it is downloaded
by our service. The simplest idea would be to maintain a
complete copy of each version; when a citation is derefer-
enced, the appropriate version would be retrieved and the
data for the eagle-i resource accessed. However, although
citation dereferencing can be done very quickly using this
approach, it is very space inefficient.

Our eagle-iV service therefore maintains a single version
of an RDF dataset as a database table, and tracks changes
in terms of the RDF triples that are inserted or deleted
between consecutive versions. This reduces storage space, as
it only captures the changes between each version, with the
potential for increasing the cost of dereferencing a citation
since the log of all changes to the resource must be examined
to get the correct version. Our experience, however, is that
eagle-i changes very slowly and therefore the deferencing cost
is negligible.

Furthermore, since eagle-iV maintains a timestamp for
each recorded change, we can answer time-based queries,
such as what triples were added or deleted in the period be-
tween t1 and t2? What was the object of triple X at time
t1? And when was triple Y first added (deleted)? Sup-
porting such time queries is crucial for understanding how
datasets change.

An overview of our approach is shown in Figure 3, which

depicts the process of versioning two RDF triples from the
eagle-i dataset. When we version the dataset for the first
time, eagle-iV creates a database table (triple store), which
contains all the unique RDF triples in the dataset. For
each triple, eagle-iV also creates a log record in the log ta-
ble (triple log), which is used to track revisions. For each
new version downloaded, our service checks if there have
been any changes in the triples. It does so by comparing
the downloaded version with the previously recorded ver-
sion, and then recording any added or deleted triples in the
triple log table.

We discuss our versioning approach in more detail by us-
ing a simplified example that depicts the versioning of the
following two triples:

<eagle-id: e2> <Developer> <Grant, G.>
<ont: t1> <rdfs:label> <"Software">

Versioning e2: First, eagle-iV searches for e2 in the triple store
table (1). Since e2 does not exist, eagle-iV inserts it into the
triple store table (2), and inserts a new log record for e2 (us-
ing its generated ID) into the triple log table (3). Because e2
is being versioned for the first time, eagle-iV assigns today’s
date (12/31/2016) to both the start and the end version date
(version start date and version end date) of e2’s log record.

Versioning t1: eagle-iV first checks if t1 exists in the
triple store table (1). Because t1 matches a triple with
the ID 2, eagle-iV then searches the triple log table for t1’s
most up-to-date log record (2). It does so by searching the
triple log table for the record with ID 2 that has the maxi-
mum end version date. eagle-iV then checks (3) if the end
version date of t1’s most up-to-date log record is equal to
the last version date (12/30/2016). If so (4), it updates the
triple’s version end date to today’s date (12/31/2016), i.e.,
t1 has not been changed since the last version. Otherwise,
our service would have inserted a new log record for triple
t1 into the log table, indicating that triple t1 has been pre-
viously deleted and is now being reinserted.

3.2 Citation Dereferencing
To dereference an eagle-i citation, the eagle-i id and date

of access are used to retrieve the RDF instance as of the

time the resource was cited. Figure 4 depicts the approach,
which consists of three stages: 1) Parse Citation, 2) Iden-
tify Resource Triples, and 3) Retrieve Versioned Data. We
discuss our approach in more detail using the following ex-
ample, which is a simplified version of the citation presented
in Section 2.1.2:

{eagle-id:"eagle-id: e1", db-version: "V12",
name:"Significance Tester",
developers:{"Manduchi, E."},
url:"http://www.cbil.upenn.edu/STAR/"}

First, “Parse Citation” extracts the information needed to
retrieve the RDF data of the cited resource, including its
eagle-i id (e1) and access timestamp (10/15/2016). Second,
“Identify Resource Triples” uses the eagle-i id to query the
triple store table for the set of RDF triple IDs (TIDs: {1,
2, 3}) that are part of e1 (i.e., RDF triples with eagle-i id
e1). Third, “Retrieve Versioned Data” checks the triple log
table to determine which of the RDF triples were active
when the citation was generated (10/15/2016). Note that
only triple 1 and 2 were active on 10/15/2016; triple 3 was
added on 10/31/2016. Finally, “Retrieve Versioned Data”
returns triples 1 and 2 from triple store table. Notice that
we have omitted the url triple from this example for the sake
of simplicity.

3.3 Performance Considerations
To understand how eagle-i changes, we have been down-

loading the working version of four eagle-i institutional datasets
– Dartmouth, Penn, Harvard and Howard – on a daily ba-
sis since August, 4th 2016. During this period, we observed
that only two datasets were modified: Harvard and Dart-
mouth. We also observed that these changes were minor.
For instance, only four RDF triples, each representing a cell
line, were updated in Dartmouth dataset. Based on these
observations, it is clear that versioning on a daily basis is not
efficient. The question becomes: How often should eagle-iV
version datasets, and how can our service perform versioning
more efficiently for citation purposes?

Since the primary use of versioning is to dereference ci-
tations, we can perform fine-grained versioning that 1) is
triggered when a user cites an eagle-i resource; and 2) only
records changes on the resource to be cited. By applying
this technique (inspired by work by [27]), we can further
reduce the space required to store deltas between consecu-
tive versions: If a version of a resource is not cited, it does
not have to be stored. As a result of reducing the set of
triples to be versioned, dereferencing performance can also
be significantly improved. However, time-based queries will
only reflect changes with respect to citations rather than all
changes. We plan to implement this technique in the next
version of eagle-iV.

In our implementation, we also create a separate triple store
table for each institution (e.g. Penn triple store, Harvard triple store,
etc.) to improve dereferencing performance.

4. FORMAT
One goal in automating citations for eagle-i is to structure

them so that they can be formatted according to predefined
styles – e.g., BibTex 7, RIS 8, or XML – and included in
7http://www.bibtex.org/
8http://referencemanager.com/sites/rm/files/m/direct
export ris.pdf

eagle-i BibTex RIS DataCite
developerName author AU contributor
manufacturerName author AU contributor
usedBy organization DP ?
name title TI title(s)
version version M2? version
URL howpublished UR relatedIdentifier
location organization DP geoLocation
resourceType type M3? resourceType
performedBy author AU contributor
author author AU contributor
inventoryNumber version? M1? ?
researchProvider organization AU ?
serviceProvider organization AU ?
eagle-i id URL ID identifier

Table 2: Mappings between eagle-i, BibTex, RIS and
DataCite

standard bibliography management tools.
Several metadata formats for data citations [5,18,33] share

a common subset of elements [8]: author, publication date,
title, edition, version, URI, resource type, publisher,
unique number fingerprint (a form of hash of the data),
a persistent URL and location. DataCite [2], the most re-
cent and widely recognized metadata format proposal for
citing data, expands this common set of fields by adding
other ones, such as subject, contributor, format, size,
description, language, rights and funding reference.

While DataCite is a good fit for many datasets, there is
no easy translation between the eagle-i fields and those in
the DataCite format. As shown in Table 2 there are some
eagle-i fields that find no match in the DataCite format –
i.e., usedBy, inventoryNumber, researchProvider and ser-

viceProvider. Other eagle-i fields, such as developerName,
manufacturerName, performedBy and author, find a match
to a single DataCite field (contributor). This is a problem
because by mapping to a single field we lose the individual
semantics of these fields, and thereby the different nuances
of contributions in eagle-i.

This problem is shared by other datasets, such as the
Earth Science Information Partners (ESIP)9: There is no
match in the DataCite format for the access date and time

field, and archive and distributor are both mapped into
the publisher field. There have also been several requests
to extend DataCite to accommodate software version as an
attribute of the format field 10 or to provide ad-hoc fields
for describing data catalogs 11. These requests are hard to
meet without enclosing metadata fields to address specific
dataset needs that may be too narrow for a general-purpose
metadata schema such as DataCite.

It is evident that one size does not fit all when it comes to
metadata formats for data citation. Metadata formats for
“traditional” resources in the digital library domain such as
the well-known Dublin Core 12 adopted a dynamic solution
that we think could be a viable possibility also in the data ci-
tation context. Indeed, the Dublin Core metadata standard

9http://wiki.esipfed.org/index.php/Interagency Data
Stewardship/Citations/provider guidelines#Detailed
Citation Content

10https://groups.google.com/forum/#!topic/
datacite-metadata/7y2Zbzr0YTY

11https://groups.google.com/forum/#!topic/
datacite-metadata/nHhFue3FnoU

12http://www.dublincore.org/

Parse	Citation
Identify	Resource	
Triples	(TIDs)

Retrieve	
Versioned	Data	

eagle-i ID:	e1

{eagle-id:"eagle-id:	e1",	db-version:	"V12",	name:"Significance Tester"	,
developers:{"Manduchi,	E."},	Accessed	On:”10/15/2016”,	
url:"http://www.cbil.upenn.edu/STAR/"}	 Timestamp	(TS:	10/15/2016)

TIDs:	{1,2,3}

Reader <eagle-id:	e1>	<Name>	<Significance	Test>
<eagle-id:	e1>	<Developer>	<Manduchi,	E>

ID subject predicate object resource_type
1 eagle-id:	e1 Name Significance	

Test
eagle-i

2 eagle-id:	e1 Developer Manduchi,	E. eagle-i

3 eagle-id:	e1 Developer Grant,	G. eagle-i

. … … … …

ID version_
start_date

version_
end_date

1 08/04/2016 12/31/2016

2 09/10/2016 12/31/2016

3 10/31/2016 12/31/2016

. … …

triple_store

triple_log

TIDs:	{1,2,3}

TS:	10/15/2016
TIDs:	{1,2,3)

1 2 3

Figure 4: An example of dereferencing the citation of the “Significance Tester” eagle-i resource (e1)

is composed of 15 base elements – i.e., the Simple Dublin
Core – that can be extended by using the so-called “appli-
cation profiles” that adapt the standard to the requirements
of specific application domains. Note, however, that an ap-
plication profile is not only a set of extra metadata fields,
but also consists of policies and guidelines defined for a par-
ticular application, implementation, or object type. Some
examples of this are the Dublin Core Application Profile for
Scholarly Works designed by [4] and the Mountain West Dig-
ital Library Dublin Core developed by the Utah Academic
Library Consortium [36]. A viable solution for data citation
that would also work well for eagle-i is to use the DataCite
metadata format as a base reference and extend it from time
to time on the basis of specific dataset requirements using
the idea of Dublin Core application profiles.

It is also not surprising that there is no easy translation
between the eagle-i nomenclature and fields in BibTex and
RIS, since these formats were developed for more traditional
publications such as books and journals (see Table 2). There
are two obvious solutions to this problem: i) encourage the
owners of databases who wish them to be cited to conform to
the developed standards whenever possible; and ii) facilitate
extensions to existing standards. For example, in BibTex it
is possible (with some work) to add new fields and define
new entry types so that the citation is properly rendered
accordingly to the specific application profiles adopted as
citation format. However, currently the overhead of doing
this would discourage many database owners from doing so
and a community effort in this direction would therefore be
desirable.

5. RELATED WORK
Core principles: Two major international initiatives

have focused on defining the core principles for data citation:
CODATA (the International Council for Science: Commit-
tee on Data for Science and Technology), which published
a report on data citation principles [1]; and FORCE 11 (The
Future of Research Communications and e-Scholarship) which
published a list of principles synthesizing the ideas of a num-
ber of working groups [15].

In addition to highlighting the idea that data is a research
object that should be citable, giving credit to data creators

and curators, these principles state a number of criteria that
a citation should guarantee:

• the identification and access to the cited data;

• the persistence of data identifiers as well as related
metadata (i.e. the notion of fixity);

• the completeness of the reference, meaning that a data
citation should contain all the necessary information
to interpret and understand the data even beyond the
lifespan of the data they describe;

• the interoperability of citations, meaning that they should
be usable both by humans and machines.

Several organizations have also proposed standards for
data citation, specifying snippets of information that should
be included [6,11]; in particular, DataCite provides an XML
metadata schema [12].

Computational solutions: Computational solutions for
data citation often rely on persistent identifiers such as Dig-
ital Object Identifiers (DOI), Persistent Uniform Resource
Locator (PURL) and the Archival Resource Key (ARK) [22,
32]. While persistent identifiers enable the data to be lo-
cated and have associated guarantees of persistence (fixity),
they do not constitute a full-fledged solution for data cita-
tion. In particular, they do not include snippets of infor-
mation that are useful for human understanding (such as
author/contributor/curator), nor do they address the issue
of how to manage the variable granularity of data to be
cited. For this reason, the use of persistent identifiers in
the context of publishing research data is intended to pro-
vide a handle for subsequent citation purposes rather than
being the data citation solution itself [22,25].

Three main proposals target the problem of citing eX-
tensible Markup Language (XML) data at different levels of
granularity. The first is a rule-based citation system that ex-
ploits the hierarchical structure of XML to provide human-
and machine-readable citations to XML elements [10]. The
second solution uses the idea of database views to define
citable units as a key to specifying and generating citation
of XML elements [9]; this solution was then extended to
handle relational databases in [13]. The third uses a ma-
chine learning approach that learns a model from a training

set of existing citations to generate citations for previously
unseen XML elements [31]. None of these solutions can be
straightforwardly adopted for citing Resource Description
Framework (RDF) data.

For citing RDF datasets, there are two main contribu-
tions. The first proposes a nano-publication model where
a single statement (expressed as an RDF triple) is made
citable in its own right; the idea is to enrich a statement
via annotations adding context information such as time,
authority and provenance [19]. The model does not specif-
ically address how to cite RDF sub-graphs with variable
granularity and the automatic creation of citation snippets.
The second defines a methodology based on named meta-
graphs to cite RDF sub-graphs, and proposes an approach
to create human-readable and machine-actionable data ci-
tations [30]. Although the approach addresses the variable
granularity problem, the snippets of information desired for
a citation are not automatically selected. These solutions
only marginally satisfy the completeness requirement men-
tioned above. None of the solutions mentioned above explic-
itly deal with the issue of fixity.

In contrast, the approach of [27] deals with both iden-
tification and fixity, and shows an implementation in the
context of relational databases. In this approach, a query
against the database returns a result set as well as a sta-
ble identifier; the identifier includes the version number of
the database when queried, and serves as a proxy for the
data to be cited. The database is versioned, so that when
the stable identifier is later used (dereferenced) the data can
be recovered as of the query time rather than the current
version.

Versioning RDF: [21] proposes a relational database-
based version management framework for RDF stores. To
reduce space, they store the original version and the deltas
between two consecutive versions in a database. They also
propose aggregated deltas, a compression technique for deltas
that creates a logical version directly rather than executing
a sequence of deltas. We borrow Im’s idea of reducing ver-
sioning storage overhead by maintaining one original version
and the deltas between consecutive versions.

[16] introduces an RDF-based approach that supports
versioning of RDF datasets and blank nodes, and uses an
RDF vocabulary to describe changes to an RDF dataset.
For each SPARQL update query, this system creates a patch
containing the added and deleted triples and their corre-
sponding RDF graphs. We also record changes as sets of
added and deleted RDF triples, but store the information in
a relational database.

Papavasileiou et al. [26] propose a methodology for han-
dling change management for RDFS data maintained by
large communities. They define a formal language of change
for RDFS knowledge bases, and develop a change detection
and application algorithm based on this language of change.
Papavasileiou’s work focuses on detecting high-level (i.e, hu-
man readable) changes from low (RDF triple) level deltas.

SemVersion [35] is an RDF-based approach, inspired by
version control system (CVS). It provides structural and se-
mantic versioning for RDF and RDF-based ontology lan-
guages (e.g., RDFS and OWL), and provides a hierarchical
data model for versioning data.

R43ples [17] is another RDF-based approach that uses
named graphs to semantically store groups of addition and
deletion deltas between revisions. A version is restored by

reconstructing a graph from the head revision, then un-
doing changes stored in the addition and deletion graphs.
However, both R&Wbase and R43ples do not support time
queries, whereas our versioning service supports them, as we
discussed above.

6. TOWARDS A GENERIC CITATION FRAME-
WORK

Although the citation framework described in this paper is
specific to RDF datasets, in future work we plan to develop
a generic citation framework and test it on citable databases
using different models (in particular IUPHAR/BPS, which
is a relational database). An overview of this framework is
shown in Figure 5.

In our proposed framework, the database administrator
(DBA) must first specify citation views and policies for how
they are to be used in constructing citations for general
queries such as joint- and alternate-use policies. When a
user in the role of Author issues a query in the host database
language (e.g. SQL, XQuery, or SPARQL), the query is
translated into Datalog and rewritten using the (citation)
view queries by means of the “Query Rewriting” component.
Joint- and alternate-use policies are then used by the “Ci-
tation Generator” component to determine which citation
views are to be used and how they are to be combined.
The chosen citation queries are then executed in the host
database language to retrieve the appropriate snippets of
information, and the information combined using the spec-
ified policy. The citation is then returned to the Author
along with the data. When a user in the role of Reader later
dereferences the citation, the “Citation Dereferencing” mod-
ule parses the citation and extract the information required
to re-issue the original query to the database in order to
obtain the originally cited data.

To use the citation framework within a database instance,
the database administrator (DBA) must do the following:

1. Understand what information must be captured in the
database to populate the citations. In the case of eagle-
i, this is done by requesting the information on the
data-entry screens used to register a resource; in the
case of IUPHAR/BPS, additional relations are added
to the schema to capture information about the people
responsible for certain subsets of information. There
may also be additional meta-data required to construct
the citation, such as the version number (or times-
tamp) at which the data was retrieved, or a reference
to the standard literature for the database as a whole.

2. Specify the citation views for the database. Frequently,
web-page views of the database represent the com-
monly executed queries and form the basis for the
citation views. However, usage of the database may
change over time, and the DBA may want to specify
additional views in response to those changes.

3. Specify joint- and alternate-use policies. Although de-
faults (such as union) can be used, the DBA may wish
to specify an ordering relationship over the views to
define the “best” view for a query. For example, in
IUPHAR/BPS the web page views of the underlying
relational database are hierarchically organized, which
imposes a natural ordering over the views: a child page
view is more specific than a parent page.

Citation Views

Policies
DBA

Query
Rewriting

Citation
Generator

define

define

Citation

Curated DB
Author

Query

Cited data

Reader dereferencing

citation

applicable
policies

views used for
rewriting query

citation
queries

citation
snippets

Citation

Citation
Dereferencing

Data
(result set)

Citation

Versioning system

Figure 5: Overview of general citation framework.

4. Ensure that the system is versioned and enable deref-
erencing. Several approaches could be used to enable
dereferencing: One is to assign an identifier to the au-
thor’s query, store it, and attach the query id to the
citation as proposed by [28]; another is to attach the
query to the citation.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we present a citation framework developed

for the eagle-i dataset. The architecture of this system is
shown in Figure 1. When viewing an eagle-i resource, a user
may click on the “Cite this resource button”. As described
in Section 2, rather than merely returning the eagle-i id for
the resource, the system will use the id to first determine
the type of the resource (i.e. which citation view to use)
and then use the associated citation query to retrieve the
appropriate snippets of information to construct the citation
for that type of resource. The citation can then be served
up in human-readable, RIS, XML or BibTex format. At a
later point in time, a user may dereference the citation to
retrieve the RDF instance for that resource as of the time
that it was cited, as described in Section 3.

The citation model developed for eagle-i is generic, and
could be used for other citable databases using a variety of
different data models. This is enabled since Datalog cap-
tures the core of common query languages for relational,
graph-based, and semi-structured data models: A wrapper
can be written for each model which translates a (citation)
query written in Datalog into a query in the language for
the model (e.g. SPARQL for RDF or SQL for relational).
The wrapper then translates the query result into the for-
mat required as input to the citation function (e.g. JSON).
Note that since Datalog is not very user-friendly, it can be
used as the intermediate language for a graphical interface
for specifying citation views.

The citation framework is also extensible beyond the fixed
set of web-form views of the citable databases. For exam-
ple, in IUPHAR/BPS citations for web-page views of the
underlying relational database are well understood, and can

be easily encoded using citation views. However, in the fu-
ture the owners of the database would like to enable general
queries over the relational database and be able to automat-
ically serve up citation. As discussed in Section 2.3, using
query rewriting we can rewrite a general query Q in terms
of set of the view queries V1, ..., Vn, and use their associated
citation queries to construct a citation for Q. Note that the
policies for how to combine the citation views used in the
rewriting(s) must be specified by the database owner. We
have recently explored this idea in the context of relational
databases [13], and our preliminary results seem promising.

An important side effect of the citation process is that the
impact of different components of the database can be auto-
matically measured. In the future, we would like to explore
how to use these impact measurements to enable fine-grained
scientometrics. We would also like to work with owners of
citable databases and developers of standards to ensure that
appropriate information is included in the database schemas,
and that the formats are flexible enough to capture the de-
sired information.

Acknowledgments.. The authors would like to thank Greg
Grant and Faith Coldren from the eagle-i team for their help.
This work has been partially funded by NSF IIS 1302212,
NSF ACI 1547360, and NIH 3-U01-EB-020954-02S1.

8. REFERENCES
[1] Out of Cite, Out of Mind: The Current State of

Practice, Polocy, and Technology for the Citation of
Data, volume 12. CODATA-ICSTI Task Group on
Data Citation Standards and Practices, September
2013.

[2] DataCite Metadata Schema Documentation for the
Publication and Citation of Research Data, Version
4.0. Technical Report, DataCite Metadata Working
Group, 2016.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[4] J. Allinson, P. Johnston, and A. Powell. A Dublin

Core Application Profile for Scholarly Works. Ariadne,
2007.

[5] M. Altman and G. King. A Proposed Standard for the
Scholarly Citation of Quantitative Data. D-Lib
Magazine, 13(3/4), 2007.

[6] American Meteorological Society. Data archiving and
citation. http://www2.ametsoc.org/ams/index.cfm/
publications/authors/journal-and-bams-authors/
journal-and-bams-authors-guide/
data-archiving-and-citation/ (accessed Nov 2016).

[7] R. Angles and C. Gutierrez. The Expressive Power of
SPARQL. In Proc. of the 7th International Semantic
Web Conference (ISWC), pages 114–129, 2008.

[8] A. Ball and M. Duke. How to Cite Datasets and Link
to Publications. Technical Report, Edinburgh: Digital
Curation Centre, 2015.

[9] P. Buneman, S. B. Davidson, and J. Frew. Why data
citation is a computational problem. Communications
of the ACM (CACM), 59(9):50–57, 2016.

[10] P. Buneman and G. Silvello. A Rule-Based Citation
System for Structured and Evolving Datasets. IEEE
Data Eng. Bull., 33(3):33–41, 2010.

[11] Data Observation Network for Earth (DataONE).
Data citation and attribution.
https://www.dataone.org/citing-dataone (accessed
Nov 2016).

[12] DataCite. DataCite metadata schema for the
publication and citation of research data.
http://schema.datacite.org/meta/kernel-3/doc/
DataCite-MetadataKernel v3.1.pdf (accessed Nov
2016), October 2014.

[13] S. B. Davidson, D. Deutsch, T. Milo, and G. Silvello.
A model for fine-grained data citation. In CIDR 2017,
8th Biennial Conference on Innovative Data Systems
Research, Online Proceedings, 2017.

[14] A. Deutsch, L. Popa, and V. Tannen. Query
reformulation with constraints. SIGMOD Record,
35(1):65–73, 2006.

[15] FORCE-11. Data Citation Synthesis Group: Joint
Declaration of Data Citation Principles. FORCE11,
San Diego, CA, USA, 2014.

[16] M. Frommhold, R. N. Piris, N. Arndt, S. Tramp,
N. Petersen, and M. Martin. Towards Versioning of
Arbitrary RDF Data. In Proc. of the 12th
International Conference on Semantic Systems
Proceedings (SEMANTICS 2016), 2016.

[17] M. Graube, S. Hensel, and L. Urbas. R43ples:
Revisions for triples an approach for version control in
the semantic web. CEUR Workshop Proc., 1215, 2014.

[18] T. Green. We need publishing standards for datasets
and data tables. Technical report, OECD Pub., 2010.

[19] P. Groth, A. Gibson, and J. Velterop. The Anatomy of
a Nanopublication. Inf. Serv. Use, 30(1-2):51–56, 2010.

[20] A. Y. Halevy. Answering queries using views: A
survey. VLDB J., 10(4):270–294, 2001.

[21] D.-H. Im, S.-W. Lee, and H.-J. Kim. A version
management framework for rdf triple stores.
International Journal of Software Engineering and
Knowledge Engineering, 22(01):85–106, 2012.

[22] J. Klump, R. Huber, and M. Diepenbroek. DOI for
Geoscience Data – How Early Practices Shape Present

Perceptions. Earth Science Inform., pages 1–14, 2015.

[23] M. Lenzerini. Data integration: A theoretical
perspective. In Proc. of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’02, pages 233–246. ACM
Press, New York, NY, USA, 2002.

[24] P. Meinhardt, M. Knuth, and H. Sack. Tailr: A
platform for preserving history on the web of data. In
Proc. of the 11th International Conference on
Semantic Systems, SEMANTICS ’15, pages 57–64.
ACM Press, New York, NY, USA, 2015.

[25] H. Mooney and M. P. Newton. The Anatomy of a
Data Citation: Discovery, Reuse, and Credit. J. of
Librarianship and Scholarly Comm., 1(1), 2012.

[26] V. Papavasileiou, G. Flouris, I. Fundulaki,
D. Kotzinos, and V. Christophides. High-level Change
Detection in RDF(S) KBs. ACM Trans. Database
Syst., 38(1):1:1–1:42, Apr. 2013.

[27] S. Pröll and A. Rauber. Scalable data citation in
dynamic, large databases: Model and reference
implementation. In Proc. of the 2013 IEEE
International Conference on Big Data, pages 307–312,
2013.

[28] A. Rauber, A. Ari, D. van Uytvanck, and S. Pröll.
Identification of Reproducible Subsets for Data
Citation, Sharing and Re-Use. Bulletin of IEEE
Technical Committee on Digital Libraries, Special
Issue on Data Citation, 12(1):6–15, May 2016.

[29] M. V. Sande, P. Colpaert, R. Verborgh, S. Coppens,
E. Mannens, and R. V. D. Walle. R&Wbase: Git for
triples. Proc. of the WWW2013 Workshop on Linked
Data on the Web, pages 1–5, 2013.

[30] G. Silvello. A Methodology for Citing Linked Open
Data Subsets. D-Lib Magazine, 21(1/2), 2015.

[31] G. Silvello. Learning to Cite Framework: How to
Automatically Construct Citations for Hierarchical
Data. Journal of the American Society for Information
Science and Technology (JASIST), in print:1–28, 2016.

[32] N. Simons. Implementing DOIs for Research Data.
D-Lib Magazine, 18(5/6), 2012.

[33] J. Starr and A. Gastl. isCitedBy: A metadata scheme
for DataCite. D-Lib Magazine, 17(1/2), 2011.

[34] C. Torniai, D. Bourges-Waldegg, and S. Hoffmann.
Semantic Web, 6:139–146, 2015.

[35] M. Völkel and T. Groza. Semversion: An rdf-based
ontology versioning system. In Proc. of the IADIS
international conference WWW/Internet, volume
2006, page 44, 2006.

[36] C. D. Walters. Mountain west digital library dublin
core application profile. Technical report, Utah
Academic Library Consortium. Digitization
Committee. Metadata Task Force, 2010.

