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Abstract

Document-Level Relation Extraction (DocRE) presents significant challenges due to its reliance on cross-sentence context and the
long-tail distribution of relation types, where many relations have scarce training examples. In this work, we introduce DOcument-
level Relation Extraction optiMizing the long taIl (DOREMI), an iterative framework that enhances underrepresented relations
through minimal yet targeted manual annotations. Unlike previous approaches that rely on large-scale noisy data or heuristic
denoising, DOREMI actively selects the most informative examples to improve training efficiency and robustness. DOREMI can
be applied to any existing DocRE model and is effective at mitigating long-tail biases, offering a scalable solution to improve
generalization on rare relations.
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1. Introduction

Document-Level Relation Extraction (DocRE) is an NLP
task that identifies all relations between a given entity pair
within a document. DocRE is a more realistic setting than
the more commonly studied sentence-level Relation Extraction
(RE), as many relational facts are typically expressed across
multiple sentences. Sentence-level RE considers only a single
entity pair connected by a maximum of one relation; whereas,
DocRE involves documents that contain multiple entity pairs,
each of which can appear multiple times and be associated with
different relations. Figure 1 shows the typical case where an en-
tity pair has multiple relations spanning multiple sentences; in-
deed, the pair (The Hitch-Hiker, Ida Lupino) has two relations:
“director" derived from the first sentence and “screenwriter"
inferred from combining the first and the second sentence. This
case is common, for instance, around 40% of relational facts
in Wikipedia documents can only be extracted from multiple
sentences [1].

The reference test collection for the task is DocRED, a large-
scale dataset constructed from Wikipedia and Wikidata [1]. It
comprises two training datasets: one includes 3,053 manually
annotated documents, while the other 101, 873 documents are
annotated using Distant Supervision (DS). Although DocRED
is commonly used for evaluating DocRE models, recent works
showed that the collection struggles with false negatives [2, 3].
Tan et al. [3] found out that almost 65% of ground truth rela-
tions were not annotated in DocRED; they corrected the manual
training and development set and released Re-DocRED, meant
as an improved version of DocRED.
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[1] The Hitch-Hiker is a 1953 film noir directed by Ida Lupino, 

about two fishing buddies who pick up a mysterioys hitchhiker 

during a trip to Mexico. [2] Inspired by the crime spree of the 

psychopathid murderer Billy Cook (1928-1952), the screenplay 

was written by Robert L. Joseph, Lupino, ..(.. 2 sentences.. ) [5] 

The film is in the public domain.  

Subject: The Hitch-Hiker          Object: Ida Lupino 

Relation: director; screenwriter

Figure 1: An example of multi-entity and multi-label problems from the Do-
cRED dataset. Subject entity "The Hitch-Hiker" (in pink) and object entity "Ida
Lupino" (in blue) express two relations in the document (director and screen-
writer). Other entities are in grey.

Nevertheless, DocRED and Re-DocRED show a signifi-
cantly imbalanced distribution of training examples across the
96 annotated relations [4]. Figure 2 shows the distribution
of labels in the annotated training datasets of both reference
datasets. They exhibit a typical power-law pattern, where a
small number of relations – i.e., frequent relations – have many
training examples, while the majority have only a few – i.e.,
long-tail relations. The DocRED annotated training dataset
consists of 38, 180 examples, half representing the four most
frequent relations, while 31 relations (out of 96) have fewer
than 100 training examples each. This class imbalance is even
more pronounced in Re-DocRED, where the training dataset
contains 85, 932 examples (three times more than DocRED),
with 20, 402 (24% of all instances) about a single relation. In
addition, half of the relations (48 out of 96) have fewer than 300
examples each, of which 12 (almost 13% of all relations) have
fewer than 100. This class imbalance raises concerns about the
actual effectiveness of the models, whose performance is biased
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(a). Label distribution in DocRED annotated training dataset. (b). Label distribution in Re-DocRED annotated training dataset.
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Figure 2: Label distribution in DocRED (a) and Re-DocRED (b) annotated training dataset.
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Figure 3: The general pipeline of a DocRE model. DOREMI enhances the training dataset, optimizing long-tail relations. Once the enhanced dataset is obtained, it
can be used for training any DocRE model.

toward frequent relations, at the expense of accurately identify-
ing long-tail relations [4, 5].

One potential approach to improve models’ performance on
the long-tail is to use DS data to augment the number of train-
ing examples for underepresented relations. However, the Do-
cRED DS dataset is noisy and biased toward popular rela-
tions. This dataset was created by aligning Wikipedia docu-
ments with Wikidata triples, where the inclusion of entities and
properties tends to favor frequently mentioned concepts [2].
The most effective label denoising strategy in DocRE is UG-
DRE [6], leveraging uncertainty accuracy estimation based on
Monte Carlo dropout. However, it does not consider long-
tail relations, requiring strategies that can selectively enhance
underrepresented relations. Although promising, Large Lan-
guage Models (LLMs) still underperform compared to current
state-of-the-art approaches for DocRE, making them ineffective
for the task [7]. The current best performing approaches for
DocRE features ATLOP [8], a sequence-based model introduc-
ing an adaptive thresholding and localized context pooling, and
DREEAM [9], enhancing predictions with an evidence-based
attention network in a teacher-student paradigm.

This work proposes DOcument-level Relation Extraction
optiMizing the long taIl (DOREMI), an iterative system that
enhances the training data through targeted manual anno-
tation of highly informative examples selected leveraging a
disagreement-based criteria inspired by [10]. DOREMI differs
from prior denoising strategies for its iterative refinement archi-
tecture and the disagreement-based instance selection for man-
ual annotation. To our knowledge, this marks the first effort to
tailor an active learning approach specifically for DocRE, fea-
turing a human-in-the-loop strategy for denoising. As shown
in Figure 3, DOREMI operates upstream in the general DocRE
pipeline by augmenting the dataset in a model-agnostic fashion,

enabling any downstream DocRE model to benefit from im-
proved long-tail coverage. To ensure high-reliability extraction,
DOREMI is precision-oriented in its design. In real-world ap-
plications of automatic Knowledge Base Construction (KBC),
prioritizing precision over recall is crucial to ensure the relia-
bility of extracted relations. Including fewer but more accurate
triples minimizes the risk of introducing incorrect information,
which can significantly degrade downstream tasks [11]. Exper-
imental results on the DocRED development dataset indicate
that annotating merely 0.001% of the DS dataset in DocRED
(400 triples in total) significantly enhances the performance of
leading models like ATLOP and DREEAM. Compared to the
leading label denoising technique, that is, UGDRE, DOREMI
registers an increase in overall precision and recall of up to
+8.2% and +3.3%, respectively (F1 improves by up to +0.7%).
For long-tail triples (< 100 examples in training), precision in-
creases by +76.0% and F1 by +5.0%. In long-tail triples in-
volving entity pairs not seen in training, DOREMI boosts ignF1
by up to 28.7% and ignPrecision by 137.6% with respect to
UGDRE. The improvements are confirmed on the Re-DocRED
test dataset, with a gain of precision and ignPrecision up to
+16.2% and +19.2% on long-tail triples (< 300 examples in
training) from annotating only 0.003% of the distant dataset
(1, 200 triples). Moreover, if we consider extreme long-tail
triples in Re-DocRED (< 100 examples in training, DOREMI
registers a substantial improvement in precision (+83.2%), ign-
Precision (+207.9%), F1 (1.3%), and ignF1 (+33.5%). The hy-
brid setting, i.e., considering UGDRE predicitions for frequent
relations and DOREMI for the long-tail, registers an improve-
ment in overall precision and ignPrecision of up to +3.7% and
+4.5%, respectively. These results indicates DOREMI effec-
tively complements exisiting denoising approaches.

The core contributions of this work are listed as follows:
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(1) We propose DOREMI, a novel iterative system tailored for
long-tail relations to enhance the distantly supervised dataset
through disagreement-driven annotations (Section 3); (2) We
demonstrate for the first time that measuring the disagreement
between multiple models is a good proxy to identify Hard-To-
Classify examples specifically for DocRE and yields substantial
performance improvements with negligible human effort (Sec-
tion 6.1); (3) We release two new Denoised Distantly Super-
vised Datasets (DDSs), one based on DocRED and one on Re-
DocRED, which can be used to train any DocRE model [12].
Unlike existing resources, these datasets are explicitly opti-
mized for long-tail relations and can be directly used to train ar-
bitrary DocRE models, leading to consistent and significant im-
provements as validated by extensive experiments.(Section 5).
The implementation of DOREMI is available in GitHub at:
https://github.com/mntlra/DOREMI.

The rest of this work is organized as follows. Section 2
presents previous efforts in DocRE, with special attention to la-
bel denoising and sequence-based models. Section 3 describes
DOREMI. Section 5 reports the performance of DOREMI
compared to other denoising strategies evaluated on the Do-
cRED development dataset (Section 5.1) and Re-DocRED test
dataset (Section 5.2). Section 6 reports an ablation study about
disagreement-based sampling and some statistics on the manual
annotation process. To conclude, section 7 draws some final re-
marks.

2. Related Work

DocRE models are categorized into graph-based and
sequence-based approaches.

Graph-based methods construct a document graph where
nodes represent words, mentions, entities, or sentences,
and edges capture various dependencies. Early approaches
used syntactic dependencies to build these graphs [13].
Christopoulou et al. [14] introduced the edge-oriented graph
model, which employs different types of edges to capture
intra- and inter-sentential relations. Subsequent models, like
GAIN [15], constructed both mention-level and entity-level
graphs to perform multi-hop reasoning for relation extraction.
These methods leverage graph neural networks to propagate
information across the graph and infer relations between en-
tities. In this context, SSAN introduces self-attention to incor-
porate the coreference and co-occurrence structure of entities
into training [16]. DocuNet instead considers DocRE as a se-
mantic segmentation task and exploits an entity-level relation
matrix to capture local and global information [17]. Xu et al.
[18] proposes a reconstruction mechanism to allow the model
to capture path dependencies between an entity pair and its
ground-truth relationship. Wang et al. [19] leverages Hierarchi-
cal Dependency Tree and Bridge Path (HDT-BP) to represent
fine-grained features aiding relation predictions. DocRE-CLiP
frames DocRE as a link prediction problem combining link pre-
diction with contextual knowledge and achieves state-of-the-
art performance [20]. DocRE-CLiP is the leading graph-based
model but cannot be reproduced due to the absence of specific
files in the shared GitHub repository. The other graph-based

models are outperformed by the leading sequence-based model;
hence, we do not consider them in our evaluation. Moreover,
graph-based methods cannot effectively scale to the size of dis-
tantly supervised datasets.

Sequence-based models treat documents as a sequence of
tokens and learn contextual representations for all entity pairs.
Early approaches using CNNs and LSTMs struggled with long-
range dependencies [1]. Transformer-based models leveraging
contextual embeddings, such as BERT, markedly improve the
task and are now standard in DocRE [21].

A key transformer-based model is ATLOP, which introduces
adaptive thresholding for entity-dependent multi-label classi-
fication, and localized context pooling for improved predic-
tions [8]. KD-DocRE extends ATLOP by addressing class im-
balance via adaptive focal loss and leveraging knowledge dis-
tillation in a teacher-student paradigm [22]. Wang et al. [19]
frames DocRE as a metric learning problem to learn similar rep-
resentations for entity embeddings and ground truth relations.
To enhance robustness, Duan et al. [23] proposes COMM, a
two-stage model employing Concentrated Margin Maximiza-
tion to adaptively adjust decision boundaries. COMM is an
enhancement strategy that can be applied to any off-the-shelf
DocRE models. Thus, this work is orthogonal to DOREMI and
can be integrated into the pipeline as future work. DREEAM
follows the same architecture as KD-DocRE and introduces an
evidence-aware distillation mechanism that better guides learn-
ing using noisy DS data, achieving state-of-the-art performance
in the task [9]. Other transformer-based or evidence-oriented
models, such as SAIS [24] and EIDER [25], exhibit inferior re-
sults and suffer from scalability issues due to reliance on man-
ual datasets. As DREEAM has shown superior performance
over all these systems, we do not consider them as baselines for
the experimental evaluation.

The long-tail problem in DocRE has been addressed by
three methods: ERA [26], PRISM [5], DocRE-Co-Occur [4].
ERA leverages a relation augmentation mechanism to enhance
the entity pair representation by applying a random mask on
pooled context representation. However, ERA shows inferior
performance compared to DREEAM and long-tail results are
inferior to DocRE-Co-Occur. PRiSM is a calibration-based
approach that learns to adapt logits based on relation and en-
tity pairs’ embeddings similarity; it improves 0.5% on AT-
LOP and is inferior to DREEAM. DocRE-Co-Occur intro-
duces the concept of relation correlations, leveraging the co-
occurrence patterns of relations to transfer knowledge from
data-rich to data-scarce relations. By modeling these correla-
tions through relation embeddings and incorporating auxiliary
co-occurrence coarse and fine-grained predictions, DocRE-Co-
Occur enhances the model’s ability to extract rare relations.
However, the performance of DocRE-Co-Occur is inferior to
that of DREEAM, even considering only long-tail relations. .

Addressing noise in DS datasets is critical and could help
balance long-tail relations via the injection of additional train-
ing data. Xiao et al. [27] mitigate noise using multi-task learn-
ing across mention-entity matching, relation detection, and fact
alignment. Zhang et al. [28] focuses on relational reasoning
and proposes a self-distillation framework with a multihead at-
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Figure 4: The DOREMI architecture including: (a) Training and Finetuning of five models on long-tail relations; (b) Disagreement Computation for each entity
pair; (c) Stop Condition checks if the disagreement is below a threshold or the annotation budget is exhausted; (d) Sampling Module samples k high-disagreement
triples to be annotated.

tention unit that models common reasoning patterns. Li et al.
[29] proposes integrating a LLM and a Natural Language Infer-
ence (NLI) module to generate relation triples and perform data
augmentation. The current state-of-the-art and best-perfoming
approach in label denoising is UGDRE, which applies Monte
Carlo dropout to estimate pseudo-label uncertainty, selectively
filtering low-confidence labels to improve training data qual-
ity [6].

In summary, we focus on ATLOP, DREEAM, and UGDRE
as our primary baselines due to their strong performance, scal-
ability, and representativeness of the best practices in modeling
and data denoising. Other approaches are either incorporated
within these models or perform worse and are therefore omit-
ted from further comparison.

3. DOREMI

DOREMI aims to enhance the prediction of long-tail rela-
tions by selectively enriching the training data with minimal
human-annotated triples. Given the high cost of expert annota-
tions, we annotate as few examples as possible while maximiz-
ing their impact on improving long-tail performance. Figure 4
shows the main computational blocks involved in DOREMI.
Table 1 reports the main symbols and notation used throughout
the paper.

DOREMI maintains a pool Γ of n diverse DocRE core mod-
els, each fine-tuned on the available Human-Annotated (HA)
training data (Figure 4a). These models then predict relations
over the noisy DS dataset and, for each entity pair (s, o), these
predicts are used to compute the disagreement (ϕΓ(s, o)) among
models. The disagreement across all pairs is then averaged ϕΓ
and evaluated against a stopping criterion (Figure 4b). Under
the hypothesis that higher inter-model disagreement indicates
greater annotation utility, we stop annotating when ϕΓ ≤ ε or
when the annotation budget b is over. At that point, we aggre-
gate model outputs into the final DDS (Figure 4c). Otherwise,
we sample the k pairs with maximum disagreement for manual

Γ Set of core models
γi i-th core model in Γ
ϕΓ(s, o) Disagreement between models in Γ for the entity

pair (s, o)
ϕΓ Mean disagreement between models in Γ for all

entity pairs in the dataset
ϵ Disagreement threshold
k Sample size
b Annotation budget
τ Label aggregation threshold

Table 1: Notation table. We report the symbols used throughout the paper and
in the figures to define the key elements of DOREMI.

labeling, augment the training set, and repeat the cycle of model
training and uncertainty-driven sampling (Figure 4a,d).

This section is organized as follows. Subsection 3.1 details
how disagreement is computed in DOREMI to select entity
pairs for annotation and to determine the stopping condition.
Subsection 3.2 defines the label aggregation criteria employed
by DOREMI to build the DDS in the final iteration. To con-
clude, Subsection 3.3 describes the iterative training procedure
followed by DOREMI.

3.1. Disagreement Computation
In the following, we define how we compute the disagree-

ment between models in DOREMI. The disagreement be-
tween models is employed to assess the stopping condition
(Figure 4c) and select the entity pairs to annotate (Figure 4d).
Le et al. [10] demonstrated that sampling by model disagree-
ment outperforms single-model confidence sampling. Inspired
by this finding, we posit that inter-model disagreement effec-
tively identifies Hard-To-Classify examples in DocRE. Below,
we formalize our disagreement measure using prediction prob-
abilities produced by the models.

Let Γ = {γi}
n
i=1 be a set of n independently trained DocRE

models. For a candidate triple (s, r, o), denote by 1γi (r|(s, o))
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the indicator function returning 1 if model γi predicts relation
r between s and o, and 0 otherwise. Conversely, we write
1γ′i (r|(s, o)) = 1 − 1γi (r|(s, o)) for the event “no relation r”.
When considering a single relation r, the models agree if they
all predict r or all predict “no relation r”. Therefore, the proba-
bility of disagreement on r can be computed as:

ϕΓ(r|(s, o)) = 1 −
[

P

 n⋂
i=1

1γi (r|(s, o))


+ P

 n⋂
i=1

1γ′i (r|(s, o))

 ] (1)

Given that model predictions are independent, the probabil-
ity that all models predict the relation can be expressed as the
product of the individual model probabilities.

We denote P(1γi (r|(s, o)) as pγi (r|(s, o)) =

P
(
γi predicts relation r | s, o

)
. Thus, the probability that

a model does not predict the relation is 1 − pγi (r|(s, o)).
Substituting into Equation 1, the disagreement is

ϕΓ(r | (s, o)) = 1 −
[ n∏

i=1

pγi (r|(s, o))

+

n∏
i=1

(
1 − pγi (r|(s, o))

) ] (2)

In DocRE, each of the R target relations may hold indepen-
dently for a given entity pair (s, o), resulting in a multi-label
classification problem. Assuming independence across rela-
tions, the overall disagreement on the relation set R for the
entity pair (s, o) is computed as the product of the individual
per-relation disagreements:

ϕΓ(s, o) =
∏
r∈R

ϕΓ(r|(s, o)) (3)

Since the disagreement ϕΓ(r|(s, o)) lies in [0, 1], we apply a
logarithmic transformation to amplify small differences and en-
hance interpretability. To ensure the logarithm is well-defined,
we add a small, scale-invariant constant δ > 0 to shift the val-
ues away from zero.1 This transformation maps disagreement
values into the range (−∞, δ], with complete disagreement cor-
responding to δ:

ψΓ(s, o) =
∑
r∈R

log ϕΓ(r|(s, o)) (4)

Based on it, we define the sampling criterion for Hard-To-
Classify instances as selecting the top-k entity pairs with the
highest disagreement:

arg max
(s,o)

ψΓ(s, o) (5)

This strategy prioritizes entity pairs (s, o) for which the model
ensemble Γ exhibits the highest uncertainty, thereby maximiz-
ing the expected benefit of manual annotation for each selected
instance.

1δ can be arbitrarily small; its value does not affect the approach. Hence,
we omit δ from the equations.

Since DOREMI is tailored for target long-tail relations, the
disagreement computation is limited to candidate long-tail
triples – that is, (s, o) pairs for which at least one core model
predicts a long-tail relation. This focus ensures that annotation
efforts are directed toward instances with the greatest potential
to improve long-tail predictions.

3.2. Denoised Distant Dataset Construction

Once the stopping condition is satisfied, we aggregate the
core models predictions to construct the denoised distant
dataset (figure 4c). This subsection describes the label aggrega-
tion criteria exploited by DOREMI. The overall mean disagree-
ment ϕΓ is computed by averaging ϕΓ(s, o) over all candidate
pairs in the distantly supervised dataset. Once ϕΓ ≤ ε or the
annotation budget b is exhausted, the active learning loop ends.
We then aggregate predictions from the best iteration of each
model – based on the highest long-tail F1 on the development
set – to construct the DDS.

To maximize coverage while maintaining label quality in the
DDS, we adopt a selective retention strategy that filters out
highly uncertain relations. Specifically, for each entity pair
(s, o) and relation r, we include r in the final label set only if
at least one model predicts it with high confidence:

max
i=1,...,n

pγi (r|(s, o)) > τ,

where τ is a confidence threshold. This approach acts as a
precision-preserving filter, ensuring that only relations sup-
ported by strong evidence from at least one model are retained.
As a result, we balance broad relational coverage with robust-
ness, reducing noise without overly sacrificing recall. Thanks
to this approach, we managed to retain around 60% of the DDS
instances, while discarding the remaining.

START

Pre-train core models
on HA data 

Compute the
disagreement between

models

YES NOBuild denoised
distant dataset

END

Finetune core models on HA
data and sampled triples

Sample k long-tail triples
maximizing the disagreement

between models

 ≤ ε ?
 |T| = b ?

c

a

b a

dc

Figure 5: DOREMI flowchart. Each process or decision is linked to the corre-
sponding computational blocks defined in Figure 4.

3.3. Iterative Training Procedure

This subsection details the iterative training procedure fol-
lowed by DOREMI. The pseudocode is reported in Algo-
rithm 1. To enhance clarity, Figure 5 reports the flowchart
of DOREMI. In input, DOREMI takes the human-annotated
(HA) and distantly supervised (DS ) training data, a disagree-
ment threshold (ε) for the stopping criterion, a set of DocRE
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Algorithm 1 Iterative training for long-tail DocRE
Input: Human-annotated training data HA, distant training data DS ,

disagreement threshold ε, DocRE models Γ = γ1, .., γn, sample
size k, budget b

Output: Denoised distantly supervised data DDS
1: for each γi in Γ do ▷ Pretrain the models (see Figure 4a)
2: γ

pretrain
i ← train(γi,HA)

3: γ
prev
i ← γ

pretrain
i

4: DDS i ← predict(γpretrain
i ,DS )

5: end for ▷ Disagreement computation (see Figure 4b)
6: ϕΓ ← mean({ϕΓ(s, o) : (s, o) ∈ DS }), T ← ∅
7: while ϕΓ > ε and |T | < b do ▷ Loop until stop condition is

satisfied (see Figure 4c)
8: S ← Sample k candidate long-tail triples with highest disagree-

ment from {DDS 1, ..,DDS n} ▷ Sampling and annotation (see
Figure 4d)

9: S A← annotate(S )
10: T ← T ∪ S A
11: for each γi in Γ do ▷ Finetune the models (see Figure 4a)
12: γ

f inetune
i ← finetune(γprev

i ,HA ∪ T )
13: γ

prev
i ← γ

f inetune
i

14: DDS i ← predict(γ f inetune
i ,DS )

15: end for ▷ Disagreement computation (see Figure 4b)
16: ϕΓ ← mean({ϕΓ(s, o) : (s, o) ∈ DS })
17: end while ▷ Stop condition reached (see Figure 4c)
18: for each γi in Γ do
19: DS S i ← predict(γ f inetune

i ,DS )
20: end for
21: DDS ← merge(DDS 1, ..,DDS n) ▷ Label aggregation (see

Figure 4c)

models Γ = {γi}
n
i=1, a sample size (k), and an annotation budget

(b).

In lines 1-5, each DocRE model γi is pretrained on the HA
training set, stored, and used to label the DS data. The predic-
tions are then used to compute the model disagreement for each
entity pair (s, o), which in turn is used to calculate the prelimi-
nary mean disagreement ϕΓ (line 6), averaging over all the pair
disagreements between the models.

Iterations (lines 7-17) continue as long as the average dis-
agreement among the models is above threshold (ϕΓ > ε) and
annotation budget is available (|T | < b). Specifically, DOREMI
samples k candidate long-tail triples based on the highest dis-
agreement (line 8), which are then annotated and stored in the
sample pool T (lines 9,10). Each model γi is fine-tuned on the
combination of HA input data and newly annotated data T (line
12). The fine-tuned model is stored to serve as a starting point
for the next iteration (line 13). Predictions are made on the DS
data using the fine-tuned model, resulting in the set DS S i (line
14). Once predictions are obtained from all models, they are
used to compute the model disagreement for each entity pair, as
well as the current iteration average disagreement (line 16).

After the loop concludes, each model γi makes a final round
of predictions on DS data (line 19). These predictions are ag-
gregated across models to generate the DDS (line 21).

4. Experimental Setup

This section describes the experimental setup exploited to
evaluate DOREMI. In particular, Subsection 4.1 reports the
core models used to predict the relations in the noisy DS data
and finetuned at each iteration. Subsection 4.2 reports the
dataset used for training and testing DOREMI. To conclude,
Subsection 4.3 describes the baselines chosen to evaluate the
effectiveness of DOREMI denoising.

The implementation of DOREMI is available in GitHub at:
https://github.com/mntlra/DOREMI. Together with the
source code, we release some Python scripts to reproduce the
DOREMI iterative training procedure. Table 2 summarizes the
hyperparameters used in DOREMI.

(a) Training with DocRED

Sample size k 100
Annotation budget b 400

(b) Training with Re-DocRED

Sample size k 300
Annotation budget b 1,200

(c) Common parameters

Label aggregation threshold τ 0.7

Table 2: DOREMI experimental setting. The table summarizes the hyperpa-
rameters exploited in DOREMI.

4.1. Core Models
We chose five core models (n = 5) for DOREMI due to

two primary reasons. Firstly, using an odd number of mod-
els avoids tie cases during aggregation. Secondly, we adopted
the core models originally used in DocRED [1], the first bench-
mark dataset for DocRE. Specifically, DocRED employs CNN,
LSTM, BiLSTM, and ContextAware (based on word2vec). the
code to train the core models exploited in DocRED is pub-
licly accessible in GitHub. 2 Given the widespread adoption
of contextual embeddings, in particular BERT [21], and their
strong capability to model long-range contextual dependencies
for relation prediction, we incorporated it into DOREMI as the
fifth core model. We developed our own core model exploit-
ing BERT. the implementation is based on DREEAM 3 and
ATLOP 4 GitHub repositories. A higher number of models
serves a proxy to enhance diversity between the models, as
in the case of n = 5. We decided to not include more recent
models tailored for DocRE because most of them rely on ei-
ther BERT or RoBERTa as the backbone transformer architec-
ture [4, 5, 8, 9, 22, 23, 24, 25]. Thus, we do not expect these
models to meaningfully increase diversity, as they are likely to
exhibit score distributions similar to BERT (reported in Fig-
ure 6).

2https://github.com/thunlp/DocRED/
3https://github.com/YoumiMa/dreeam
4https://github.com/wzhouad/ATLOP
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During training, we followed the same hyperparameters
adopted in [1]. Table 3 reports the experimental setting used in
DOREMI. All baselines were optimized using Adam. For the
BERT core mode, we adopted the same hyperparameter settings
of DREEAM [9].

(a) DocRED core models

Batch size 40
Pre-training epochs 200
Finetuning epochs 70
Learning rate 0.001
CNN hidden size 200
CNN window size 3
CNN dropout rate 0.5
LSTM hidden size 128
LSTM dropout rate 0.2
Word embedding dimension 100
Entity type embedding dimension 20
Coreference embedding dimension 20
Distance embedding dimension 20

(b) BERT core model

Batch size 4
Pre-training epochs 30
Finetuning epochs 10
Transformer learning rate 3e-5
Classifier learning rate 1e-4
Warmup ratio 0.06
Maximum norm of the gradients 1.0

Table 3: Core models hyperparameter settings. We employed the same training
setting as DocRED [1] for CNN, BiLSTM, LSTM, and ContextAware. the
hyperparameters for BERT are taken from DREEAM implementation [9].

4.2. Datasets

We used DOREMI with DocRED [1] and Re-DocRED [3],
a polished version of the former. Despite known annotation
issues in DocRED, it remains a widely used benchmark [7,
30, 31, 32, 33]. In the DocRED configuration, the core mod-
els are iteratively trained starting from the DocRED annotated
training set, with the optimal iteration selected based on the
highest long-tail F1 evaluated on the DocRED development
set. The test dataset of DocRED is not publicly accessible;
the dataset can be evaluated by submitting the models pre-
dictions to CodaLab 5, which solely reports the relation ex-
traction F1 and evidence F1 on the test set. Thus, we can-
not perform a long-tail evaluation exploiting it. Given this
dataset limitation, previous works on DocRE report the fi-
nal performance on both the DocRED development and test
datasets [4, 5, 8, 9, 22, 23, 24, 25, 30, 33]. Thus, we decided
to perform a detailed evaluation on the DocRED development
dataset and not change the dataset splitting to ensure compati-
bility with previous works. In this way, DOREMI results can

5https://codalab.lisn.upsaclay.fr/competitions/365

be compared to any existing DocRE model exploiting DocRED.
We also evaluated our approach on the DocRED test dataset and
included the micro-averaged F1 score on the full dataset.

We define long-tail relations as those with less than 100 in-
stances in the training set (cf. Figure 2a), and set the sampling
size k = 100. To keep annotation costs minimal, we annotated
only the 0.001% (b = 400) of the distantly supervised dataset.
Therefore, at each iteration, the fine-tuning dataset grows by
0.3%. For Re-DocRED, we define long-tail relations as those
having less than 300 training instances (cf. Figure 2b). Since
Re-DocRED contains roughly three times more triples than Do-
cRED – 85, 932 vs 38, 180 – we scale both k and b propor-
tionally, setting k = 300 and b = 1, 200 (0.003%). This pro-
portional scaling ensures that the fine-tuning dataset grows by
0.3% as for DocRED.

Figure 6 reports the score distribution of the distant triple pre-
dicted by the core models trained using DocRED (Figure 6a)
and Re-DocRED (Figure 6b). The distribution is skewed to-
wards high confidence for both datasets, with most models ex-
hibiting a mean confidence score (µ) around 0.7. Based on this
insight, we set the threshold τ = 0.7 to retain only relations
strongly supported by at least one model. This choice of τ en-
sures a robust balance between coverage and noise reduction,
effectively acting as a precision-preserving filter without overly
sacrificing recall.

Using this threshold during the aggregation step, DOREMI
retains 65.5% of predicted relations on DocRED, producing a
dataset with 1, 704, 471 triples. On Re-DocRED, it preserves
61.5% of relations, yielding 4, 158, 468 triples.

4.3. Baselines

To assess the effectiveness of our DDS, we train state-of-
the-art DocRE models from scratch on three datasets: (i) the
original DocRED DS dataset [1], (ii) the denoised UGDRE
dataset [6], and (iii) the DOREMI DDS (ours). DOREMI aims
to improve performance in long-tail relations; hence, it can
complement approaches focusing on frequent relations, such as
UGDRE. To demonstrate this, we evaluate each model on a hy-
brid dataset, denoted D+U, which combines DOREMI long-tail
predictions with UGDRE frequent relations annotations.

We adopt two transformer-based architectures as baselines:
ATLOP [8] and DREEAM [9]. Both approaches support mul-
tiple transformer backbones; we report results using BERT-
base and RoBERTa-large. DREEAM follows a teacher–student
paradigm, where the student model is first trained on DS data
(called “self-training") and then fine-tuned on human-annotated
data. Since our focus is on evaluating the quality of distantly su-
pervised datasets, we report the performance of the DREEAM
student model right after self-training. These models have
been selected due to their strong empirical performance and
the availability of open-source implementations (cf. Section 2).
The implementation of ATLOP 6 and DREEAM 7 is publicly
available in GitHub. Thus, we train the two models from

6https://github.com/wzhouad/ATLOP
7https://github.com/YoumiMa/dreeam
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Figure 6: Score distributions of the core models trained using DocRED (a) and Re-DocRED (b) in the DocRED distant dataset.

scratch, leveraging the experimental setup and hyperparameter
settings of the corresponding reference papers. We share the
scripts to train DREEAM and ATLOP using different distant
datasets in the repro directory of our GitHub repository. 8 Al-
though UGDRE [6] also provides a competitive DocRE model
along with the denoised dataset, we could not reproduce their
results due to deprecated dependencies. Model performance is
reported using micro-averaged metrics, as this is the standard
evaluation approach commonly adopted in DocRE literature.

5. Experimental Results

This section reports DOREMI results compared to a state-
of-the-art approach for denoising DS data. In particular, sub-
section 5.1 reports the performance of ATLOP and DREEAM
evaluated on the DocRED development dataset. In this con-
figuretion, DOREMI is trained and finetuned on the DocRED
training dataset. Subsection 5.2 reports the performance of AT-
LOP and DREEAM evaluated on the Re-DocRED test dataset.
In this configuretion, DOREMI is trained and finetuned on the
Re-DocRED training dataset. Since Re-DocRED is three times
larger than DocRED, we consider long-tail relations those hav-
ing less than 300 training examples. Relations having less than
100 training examples represent the "extreme long-tail". Ex-
treme long-tail performances are reported in Subsection 5.2.1.

5.1. DocRED

Table 4 reports the performance of ATLOP and DREEAM
trained on different distant datasets and evaluated on the Do-
cRED development (dev) dataset. We rely on the dev dataset
because the test set is not publicly available and thus prevents
long-tail analysis.

When trained on the DDS generated by DOREMI, all DocRE
models exhibit superior performance – both overall and on

8https://github.com/mntlra/DOREMI/tree/main/repro

long-tail relations. Compared to UGDRE, the current state-of-
the-art in distant label denoising, DOREMI improves overall
precision by up to +8.2% and F1 by up to +0.7%. The im-
provement of DOREMI over UGDRE in terms of F1 score is
statistically significant for three out of four models, as deter-
mined by a paired t-test (p < 0.01). The overall improvement
of DOREMI over UGDRE in terms of F1 score is confirmed
by the performance on the DocRED test dataset (column “Test-
F1" of Table 4). In long-tail prediction, DOREMI achieves a
precision of 43.3%, representing a relative gain of +76.0% over
UGDRE with ATLOP-RoBERTa, and +63.1% with DREEAM-
RoBERTa. We further evaluate performance using ignPrecision
and ignF1, which exclude entity pairs observed during training.
On these metrics, DocRED and UGDRE exhibit steep precision
drops (nearly −50%) on unseen long-tail triples. In contrast,
DOREMI delivers two to three times higher ignPrecision than
UGDRE, scoring a performance gain of up to +137.6%.

Remarkably, these improvements are attained with 400 man-
ual annotations – just 0.001% of all candidate pairs – un-
derscoring the efficiency of DOREMI in constructing a high-
quality corpus with minimal human effort.

Finally, in a hybrid configuration (D+U) that combines
DOREMI labels for rare relations with UGDRE labels for fre-
quent ones, D+U matches or exceeds UGDRE in most met-
rics in both the DocRED dev and test dataset. These find-
ings indicate that iterative, disagreement-driven labeling yields
stronger denoising capabilities than existing approaches and
can be seamlessly integrated with existing frequency-based
techniques.

5.2. Re-DocRED
Table 5 presents the performance of ATLOP and DREEAM

trained on different distant datasets and evaluated on the Re-
DocRED test dataset. Models trained with the DOREMI DDS
consistently outperform those employing the original DocRED
DS dataset and the UGDRE one in terms of long-tail precision
and ignored precision (ignPrecision) – regardless of model ar-
chitecture (ATLOP or DREEAM) and transformer backbone

8



Table 4: Performance of DocRE models trained on distant datasets: DocRED, UGDRE, DOREMI (ours), and D+U (DOREMI for long-tail, UGDRE for frequent
relations). Results are on the DocRED dev set, except for column “Test-F1", which reports the micro-F1 for the full dataset on the DocRED test set. Long-tail
refers to relations with < 100 training instances. Best and second-best results are bolded and underlined.

Model Distant Data Full Dataset Long-Tail Triples
Test-F1 Precision Ign Prec Recall F1 Ign F1 Precision Ign Prec Recall F1 Ign F1

ATLOP
BERT

DocRED 0.5326 0.5139 0.3346 0.5725 0.5416 0.4223 0.1917 0.0857 0.3839 0.2557 0.1401
UGDRE 0.5797 0.5362 0.3711 0.6725 0.5967 0.4783 0.2332 0.1293 0.4013 0.2950 0.1956
DOREMI 0.5883 0.5722 0.4384 0.6160 0.5933 0.5123 0.3634 0.2701 0.1946 0.2535 0.2262
D+U 0.5901 0.5600 0.3930 0.6416 0.5980 0.4874 0.3807 0.2744 0.2336 0.2895 0.2523

ATLOP
RoBERTa

DocRED 0.5409 0.5094 0.3345 0.5912 0.5472 0.4272 0.1913 0.0876 0.4067 0.2602 0.1442
UGDRE 0.5840 0.5350 0.3746 0.6810 0.5992 0.4834 0.2387 0.1399 0.4604 0.3144 0.2146
DOREMI 0.5909 0.5788 0.4453 0.6242 0.6006 0.5198 0.4200 0.3324 0.2362 0.3024 0.2762
D+U 0.5998 0.5657 0.4063 0.6528 0.6061 0.5009 0.3713 0.2737 0.2188 0.2753 0.2432

DREEAM
BERT

DocRED 0.5306 0.5602 0.3905 0.5036 0.5304 0.4399 0.1714 0.0862 0.2443 0.2013 0.1274
UGDRE 0.5966 0.5915 0.4366 0.6138 0.6025 0.5102 0.2649 0.1652 0.3154 0.2880 0.2168
DOREMI 0.6095 0.5765 0.4433 0.6341 0.6039 0.5218 0.3928 0.3058 0.2483 0.3043 0.2741
D+U 0.6011 0.6108 0.4578 0.5991 0.6049 0.5190 0.4387 0.3444 0.2497 0.3182 0.2895

DREEAM
RoBERTa

DocRED 0.5459 0.5582 0.3890 0.5370 0.5474 0.4512 0.1834 0.0965 0.3047 0.2289 0.1466
UGDRE 0.6064 0.5853 0.4335 0.6481 0.6151 0.5195 0.2656 0.1723 0.3544 0.3036 0.2319
DOREMI 0.6198 0.5904 0.4564 0.6513 0.6194 0.5367 0.4332 0.3492 0.2523 0.3189 0.2930
D+U 0.6144 0.6090 0.4564 0.6287 0.6187 0.5289 0.4226 0.3261 0.2456 0.3107 0.2802

Table 5: Performance of DocRE models trained on distantly supervised datasets: DocRED, UGDRE, DOREMI (ours), and D+U (DOREMI for long-tail, UGDRE
for frequent relations). Results are on the Re-DocRED test set; long-tail refers to relations with < 300 training instances. Best and second-best results are bolded
and underlined.

Model Distant Data Full Dataset Long-Tail Triples
Precision Ign Prec Recall F1 Ign F1 Precision Ign Prec Recall F1 Ign F1

ATLOP
BERT

DocRED 0.7353 0.5793 0.3000 0.4261 0.3953 0.3932 0.2610 0.2710 0.3209 0.2659
UGDRE 0.8044 0.7445 0.7007 0.7490 0.7220 0.6034 0.5280 0.5513 0.5762 0.5394
DOREMI 0.7480 0.6297 0.6914 0.7186 0.6591 0.6741 0.6061 0.4090 0.5091 0.4884
D+U 0.8340 0.7779 0.6580 0.7356 0.7129 0.6087 0.5260 0.4699 0.5303 0.4963

ATLOP
RoBERTa

DocRED 0.7412 0.6013 0.3241 0.4510 0.4212 0.4029 0.2885 0.3064 0.3480 0.2972
UGDRE 0.8090 0.7502 0.7087 0.7555 0.7288 0.5994 0.5248 0.5600 0.5791 0.5419
DOREMI 0.7486 0.6311 0.7023 0.7247 0.6648 0.6715 0.6112 0.4020 0.5029 0.4850
D+U 0.8264 0.7707 0.6888 0.7513 0.7275 0.6049 0.5326 0.5182 0.5582 0.5253

DREEAM
BERT

DocRED 0.8087 0.6791 0.2609 0.3945 0.3770 0.4429 0.3166 0.1939 0.2697 0.2405
UGDRE 0.8265 0.7740 0.6966 0.7560 0.7333 0.6364 0.5729 0.5182 0.5713 0.5442
DOREMI 0.7701 0.6576 0.7037 0.7354 0.6799 0.7250 0.6640 0.4210 0.5326 0.5153
D+U 0.8562 0.8086 0.6433 0.7347 0.7166 0.6642 0.5992 0.4340 0.5250 0.5034

DREEAM
RoBERTa

DocRED 0.8170 0.6964 0.2861 0.4238 0.4056 0.4672 0.3444 0.2357 0.3134 0.2799
UGDRE 0.8464 0.7996 0.7252 0.7811 0.7606 0.6517 0.5901 0.5530 0.5983 0.5709
DOREMI 0.7939 0.6894 0.7267 0.7588 0.7075 0.7575 0.7032 0.4498 0.5644 0.5486
D+U 0.8766 0.8354 0.6738 0.7619 0.7459 0.6936 0.6349 0.4807 0.5679 0.5472

(BERT or RoBERTa). Compared to the UGDRE denoised
dataset, training with the DOREMI DDS reaches a precision
of 75.75%, representing a gain of 10.58 points over UGDRE
(65.17%) with DREEAM-RoBERTa. Pronounced improve-
ments are observed in the ignored metrics, which exclude en-
tity pairs observed during training. Compared to UGDRE,
DOREMI achieves a +19.2% gain in long-tail ignPrecision,
highlighting its superior capability of generalizing to new un-
seen entity pairs.

Considering the full dataset, DOREMI achieves the high-
est recall on DREEAM for both transformer backbones, reg-
istering a statistically significant improvement of up to +1.0%

compared to UGDRE (p < 0.01). In the hybrid D+U setting,
top performance is obtained for full precision-related metrics
(+3.7% on UGDRE), indicating that DOREMI disagreement-
driven supervision effectively complements existing denoising
approaches.

These gains are achieved by annotating just 0.003% of the
distant dataset, underscoring the efficiency of DOREMI in pro-
ducing high-quality labels at minimal annotation cost. The
number of triples annotated to achieve these results is 1, 200.
This amounts to roughly 20 annotator-hours of work, based on
the annotation rate of one minute per triple that we observed
during the annotation phase. This highlights its potential to sig-
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Table 6: Micro-averaged performance on extreme long-tail prediction of
DocRE models trained on distant datasets: DocRED, UGDRE, DOREMI
(ours), and D+U (DOREMI for long-tail, UGDRE for frequent relations). Re-
sults are on the Re-DocRED test set; extreme long-tail refers to relations with
< 100 training instances. Best and second-best results are bolded and under-
lined.

Model Distant Data Precision IgnPrec Recall F1 Ign F1

ATLOP
BERT

DocRED 0.2532 0.1016 0.2977 0.2737 0.1515
UGDRE 0.3333 0.1940 0.4122 0.3683 0.2639
DOREMI 0.5806 0.4902 0.2748 0.3731 0.3522
D+U 0.5161 0.4208 0.2443 0.3316 0.3097

ATLOP
RoBERTa

DocRED 0.2711 0.1295 0.3435 0.3030 0.1881
UGDRE 0.3253 0.1765 0.4122 0.3636 0.2471
DOREMI 0.5962 0.5435 0.2366 0.3388 0.3297
D+U 0.4756 0.3582 0.2977 0.3662 0.3252

DREEAM
BERT

DocRED 0.3538 0.1923 0.1756 0.2347 0.1836
UGDRE 0.3929 0.2917 0.3359 0.3621 0.3122
DOREMI 0.4921 0.4483 0.2366 0.3196 0.3098
D+U 0.5606 0.4821 0.2824 0.3756 0.3562

DREEAM
RoBERTa

DocRED 0.3085 0.1667 0.2214 0.2578 0.1902
UGDRE 0.3966 0.3069 0.3511 0.3725 0.3276
DOREMI 0.5862 0.4783 0.2595 0.3598 0.3365
D+U 0.5636 0.4545 0.2366 0.3333 0.3112

nificantly improve DocRE and KBC. The results for extreme
long-tail triples, defined as relations with less than 100 exam-
ples in the Re-DocRED training dataset, reported in the next
section, confirm the same trend.

5.2.1. Extreme Long-Tail Relations
Re-DocRED long-tail triples have less than 300 examples

in the annotated training dataset. This section investigates the
impact of the DOREMI DDS in the extreme long-tail triples,
i.e., triples with less than 100 examples in the Re-DocRED
annotated training dataset. As shown in Table 6, DOREMI
shows superior results compared to the DocRED DS dataset
and UGDRE, especially in precision (+83.2% compared to
UGDRE). When combined with UGDRE, i.e. dataset D+U,
the dataset outperforms DOREMI when considering DREEAM
with BERT-base as a backbone and reports superior perfor-
mance compared to the DocRED DS dataset and UGDRE. The
findings validate that DOREMI can be effectively integrated
with various systems to enhance performance further.

DOREMI proves particularly effective on the ignored met-
rics, which evaluate only pairs unseen by the models dur-
ing training. Compared to UGDRE on long-tail prediction,
DOREMI achieves a +207.9% relative increase in ignPrecision
and a +33.5% gain in ignF1. ATLOP-BERT more than doubles
UGDRE’s ignPrecision on unseen long-tail predicitions, while
ATLOP-RoBERTa more than triples it.

6. Discussion

This section investigates different strategies to select mean-
ingful training examples to annotate, identifying the most suit-
able approach for our study (Subsection 6.1). Subsection 6.2
describes the effect of setting the annotation budget b = 400 for
DocRED and motivates the infeasibility of a sensitivity analy-
sis for DOREMI. In addition, we demonstrate the effectiveness

of our disagreement-based sampling procedure by reporting the
number of long-tail examples and N/A triples detected (Subsec-
tion 6.3).

6.1. Sampling Strategies
We compare our disagreement-based strategy with Max-

Entropy, one of the most common sampling techniques [34].
To establish the best solution to represent the disagreement be-
tween n DocRE models, we also consider a few alternatives
to Equation 5. We introduce a selection criterion based on
the disagreement between relations called Positive Probability
Mean (PPM). Instead of a probabilistic approach, PPM con-
siders the mean disagreement across all relations as a proxy to
compute the disagreement between the models. In this scenario,
the probability of disagreement on a given relation r is com-
puted as one minus the product of the probability that a given
model predicts relation r for the pair (s, o), which we defined as
pγi (r|(s, o)) in Section 3.1:

ϕΓ(r|(s, o)) = 1 −
n∏

i=1

pγi (r|(s, o)) (6)

The sampling criterion selects the top-k entity pairs with the
highest mean probability of disagreement across all relations:

arg max
(s,o)

∑
r∈R ϕΓ(r|(s, o))
|R|

(7)

DOREMI defines the probability of disagreement on a given
relation r using both the probability that a model predicts the
relation and the probability that the model does not predict the
relation (cfr. Section 3.1). Instead, in Positive Probability Dis-
agreement (PPD) the probability of disagreement only consid-
ers the probability that a model predicts the relation. In this
case, the probability of disagreement on a given relation r is
defined as:

ϕΓ(r|(s, o)) = 1 −
n∏

i=1

pγi (r|(s, o)) (8)

Following the same steps as Section 3.1, the overall disagree-
ment on the relation set R for the entity pair (s, o) is:

ϕΓ(s, o) =
∏
r∈R

ϕΓ(r|(s, o)) (9)

We apply the same logarithmic transformation as Section 3.1
and define the disagreement for the entity pair (s, o) as:

ψΓ(s, o) =
∑
r∈R

log ϕΓ(r|(s, o)) (10)

Based on it, we define the sampling criterion as selecting the
top-k entity pairs with the highest disagreement:

arg max
(s,o)

ψΓ(s, o) (11)

In DOREMI, the training data set is iteratively enriched with
annotated triples selected according to the chosen criterion.

10



Figure 7: Micro-averaged F1 score of long-tail relations using different selection criteria computed on half of the DocRED dev dataset. Each subplot reports one
of the five DocRE core models exploited during iterative training by DOREMI. Long-tail refers to relations with < 100 training instances. Annotation Budget "0"
refers to the pre-training step, which is independent of the employed selection criteria.

Thus, testing different selection criteria requires multiple an-
notation rounds for each criterion, which can be costly. There-
fore, instead of sampling training examples from the DocRED
DS data and manually annotating the triples, we split the Do-
cRED development dataset in half: one half serves for evalu-
ation, while the other half is used as the sampling pool. We
maintain the budget b and k used for the manual annotation,
resulting in four iterations of DOREMI.

Figure 7 reports the micro-averaged F1 score of long-tail re-
lations at each iteration for the DocRE core models using dif-
ferent selection criteria for the sampling module in DOREMI.
The F1 score is computed on half of the DocRED develop-
ment dataset and considers long-tail relations with less than 100
training instances in the DocRED manual training dataset. The
disagreement-based selection criterion exploited in DOREMI
shows a steady performance improvement across iterations for
all core models. Between iterations 2 and 5, the steeper F1 im-
provement suggests more effective sampling. Other approaches
yield minimal changes in the F1 score across iterations and,
in some cases, result in performance degradation. Such a be-
haviour is evident in ContextAware and BERT when exploiting
PPD or in BiLSTM when using Max-Entropy. Notably, em-
ploying PPM results in a lower F1 score than the pre-training
step for ContextAware and BERT; hence, demonstrating it is
not a good proxy to select training instances.

6.2. Sensitivity Analysis

Figure 7 reports DOREMI micro-averaged F1 scores of long-
tail relation computed on half of the DocRED dev dataset using
different annotation budgets (DOREMI is represented with red

circled). All core models report a sizable improvement when
increasing the number of annotations, motivating the need for
the annotation budget for DocRED equal to 400. We capped
b at 400 to limit the amount of human annotation and because
the improvement curve exhibits an inflection between b = 300
and b = 400, suggesting plateau performance gains beyond this
point.

The sensitivity analysis for the other hyperparameters is in-
feasible for DOREMI. Being a human-in-the-loop method,
studying the effect of different values for each hyperparame-
ter would require several human annotation rounds and a large
annotation budget.

6.3. Manual Annotation Analysis

This section reports some statistics on the manual annota-
tion process. We investigate whether the sampling strategy em-
ployed in DOREMI effectively identifies long-tail examples and
the number of N/A triples detected. Table 7 reports the man-
ual annotation statistics for both DocRED and Re-DocRED. In
both datasets, the number of long-tail triples annotated grows at
each iteration, demonstrating that models are getting better at
predicting long-tail triples and the sampling strategy effectively
samples them. Notably, for the DocRED dataset, the growth
is more pronounced. During the first iteration, the ratio of fre-
quent to long-tail triples is nearly equal, whereas by the final
iteration, long-tail relations account for 60% of the annotated
triples, while frequent triples make up only 14%.

The portion of N/A instances is marginal across all itera-
tions and datasets. However, it grows at each iteration in Re-
DocRED. A manual analysis of these cases revealed that the
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Table 7: Manual annotations statistics. For each dataset and each iteration,
we report the number and the percentage over the total of annotated long-tail
triples, frequent relations, N/A, and the total number of annotated triples.

Iteration Long-Tail Frequent N/A Triples

(a) DOREMI iterative training with DocRED

Iteration 1 34 (34 %) 42 (42%) 24 (24%) 100
Iteration 2 39 (39 %) 43 (43%) 18 (18%) 100
Iteration 3 49 (49 %) 36 (36%) 15 (15%) 100
Iteration 4 60 (60 %) 14 (14%) 26 (26%) 100

Total 182 (46 %) 135 (33%) 83 (21%) 400

(b) DOREMI iterative training with Re-DocRED

Iteration 1 172 (57 %) 122 (41%) 6 (2%) 300
Iteration 2 178 (59 %) 99 (33%) 23 (8%) 300
Iteration 3 183 (61 %) 84 (28%) 33 (11%) 300
Iteration 4 206 (67 %) 50 (18%) 44 (15 %) 300

Total 739 (62 %) 355 (29%) 106 (9%) 1,200

majority of N/A instances in Re-DocRED samples stem from
incorrect entity annotations in the DocRED DS dataset. This
observation, coupled with the superior performance of models
trained on Re-DocRED compared to those trained on DocRED,
suggests that highly uncertain triples are often the result of such
annotation errors. Nevertheless, incorporating N/A triples en-
hances model recall – as demonstrated in Section 5 – by help-
ing the model learn to distinguish between the presence and
absence of a relation.

While the sampling strategy is designed to emphasize long-
tail relations, it cannot eliminate the presence of frequent triples
and N/A instances. However, including such examples con-
tributes to a more balanced training signal, ultimately en-
abling the models trained with the DOREMI denoised dataset
to achieve strong performance.

7. Conclusions

We introduced DOREMI, a dataset enhancement framework
that targets long-tail relation prediction while minimizing man-
ual annotation. Leveraging iterative training, DOREMI iden-
tifies Hard-To-Classify examples by measuring disagreement
across multiple models. Being optimized for long-tail pre-
dictions, DOREMI can complement existing denoising ap-
proaches, such as UGDRE, which are better suited for frequent
relations. The resulting denoised distantly supervised dataset
can be used to train any off-the-shelf DocRE model, yielding
improved performance on long-tail relation prediction. Ex-
periments on DocRED and Re-DocRED show that DOREMI
significantly improves performance, especially in long-tail set-
tings. Remarkably, annotating just 0.001% of the DocRED DS
dataset yields precision improvements of up to a +8.2% overall
and +76.0% in long-tail predictions over UGDRE – the cur-
rent state-of-the-art in label denoising – as evaluated on the
DocRED dev dataset. DOREMI also significantly boosts long-
tail ignPrecision by +137.6%, indicating better generalization
to novel entity pairs unseen during training. Similar findings
hold for Re-DocRED, where labeling 0.003% of the data leads

to a +16.2% gain in long-tail precision and +19.2% on ign-
Precision. On the extreme long-tail triples, DOREMI achieves
a +83.2% relative increase in precision and +207.9% in ign-
Precision compared to UGDRE.

These results highlight the effectiveness of disagreement-
driven annotation – enabling better generalization with negli-
gible human effort.
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Table A.8: Macro-averaged performance of DocRE models trained on distant
datasets: DocRED, UGDRE, DOREMI (ours), and D+U (DOREMI for long-
tail, UGDRE for frequent relations). Results are on the DocRED dev set. Best
and second-best results are bolded and underlined.

Model Distant Data Precision IgnPrec Recall F1 Ign F1

ATLOP
BERT

DocRED 0.4499 0.2764 0.4456 0.4196 0.2917
UGDRE 0.4490 0.2951 0.5117 0.4572 0.3358
DOREMI 0.4825 0.3693 0.4057 0.3997 0.3402
D+U 0.4576 0.3162 0.4486 0.4343 0.3351

ATLOP
RoBERTa

DocRED 0.4497 0.2844 0.4696 0.4299 0.3054
UGDRE 0.4497 0.3006 0.5481 0.4682 0.3495
DOREMI 0.4502 0.3433 0.4264 0.4128 0.3505
D+U 0.4834 0.3479 0.4663 0.4465 0.3541

DREEAM
BERT

DocRED 0.4711 0.3277 0.3310 0.3566 0.2764
UGDRE 0.4801 0.3408 0.4255 0.4279 0.3420
DOREMI 0.4444 0.3430 0.4519 0.4260 0.3633
D+U 0.5199 0.3916 0.4172 0.4415 0.3673

DREEAM
RoBERTa

DocRED 0.4644 0.3200 0.3709 0.3851 0.2997
UGDRE 0.4811 0.3364 0.4626 0.4477 0.3543
DOREMI 0.4749 0.3742 0.4496 0.4312 0.3673
D+U 0.5325 0.3993 0.4416 0.4542 0.3741

Table A.9: Macro-averaged performance of DocRE models trained on distant
datasets: DocRED, UGDRE, DOREMI (ours), and D+U (DOREMI for long-
tail, UGDRE for frequent relations). Results are on the Re-DocRED test set.
Best and second-best results are bolded and underlined.

Model Distant Data Precision IgnPrec Recall F1 Ign F1

ATLOP
BERT

DocRED 0.6614 0.5093 0.3016 0.3698 0.3075
UGDRE 0.7088 0.6189 0.5970 0.6264 0.5702
DOREMI 0.6922 0.5801 0.5354 0.5781 0.5181
D+U 0.7388 0.6578 0.5490 0.6107 0.5641

ATLOP
RoBERTa

DocRED 0.6691 0.5218 0.3354 0.3983 0.3393
UGDRE 0.7064 0.6195 0.6075 0.6358 0.5774
DOREMI 0.6951 0.5885 0.5275 0.5699 0.5150
D+U 0.7302 0.6500 0.5760 0.6245 0.5760

DREEAM
BERT

DocRED 0.7548 0.6040 0.2461 0.3236 0.2826
UGDRE 0.7238 0.6528 0.5813 0.6253 0.5843
DOREMI 0.7100 0.6110 0.5400 0.5918 0.5387
D+U 0.7628 0.6990 0.5232 0.6013 0.5649

DREEAM
RoBERTa

DocRED 0.7642 0.6453 0.2834 0.3633 0.3245
UGDRE 0.7597 0.6929 0.6164 0.6599 0.6216
DOREMI 0.7605 0.6591 0.5661 0.6260 0.5725
D+U 0.7963 0.7311 0.5522 0.6306 0.5983

Appendix A. Macro-Averaged Results

Tables A.8 and A.9 report the macro-average performance of
ATLOP and DREEAM trained on different datasets and tested
on DocRED and Re-DocRED, respectively. Macro-averaging
computes the metric independently for each class and then takes
the average, treating all classes equally regardless of their fre-
quency. This method is particularly useful for assessing perfor-
mance on rare or underrepresented classes. Thus, in our case,
it makes sense to display the macro-average performance on all
relations.

In both datasets, the macro-averaged performance confirms
our findings in Section 5, demonstrating how DOREMI alone
or combined with UGDRE improves the ignored metrics – ign-
Precision and ignF1 –, aiding models to generalize to unseen
pairs. In particular, when DOREMI exploits DocRED for iter-
ative training (Table A.8), DOREMI shows an improvement of
up to +25.1% in ignPrecision and +6.2% in ignF1 compared to
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Table B.10: Performance of DocRE models trained on the DOREMI distant dataset and LLMs. Best results are bolded.

Category Model Full Dataset Long-Tail Triples
Precision Ign Prec Recall F1 Ign F1 Precision Ign Prec Recall F1 Ign F1

(a) Evaluated on DocRED dev dataset (long-tail relations with <100 training instances)

LLMs GPT-4.1 0.1986 - - - 0.0528 0.0834 - - - 0.0654 - - - 0.0470 0.0547 - - -
Llama-3.3-70B 0.0236 - - - 0.0025 0.0046 - - - 0.000 - - - 0.0000 0.0000 - - -

BERT ATLOP-DOREMI 0.5722 0.4384 0.6160 0.5933 0.5123 0.3634 0.2701 0.1946 0.2535 0.2262
DREEAM-DOREMI 0.5765 0.4433 0.6341 0.6039 0.5218 0.3928 0.3058 0.2483 0.3043 0.2741

RoBERTa ATLOP-DOREMI 0.5788 0.4453 0.6242 0.6006 0.5198 0.4200 0.3324 0.2362 0.3024 0.2762
DREEAM-DOREMI 0.5904 0.4564 0.6513 0.6194 0.5367 0.4332 0.3492 0.2523 0.3189 0.2930

(b) Evaluated on Re-DocRED test dataset (long-tail relations with <300 training instances)

LLMs GPT-4.1 0.1612 - - - 0.0301 0.0579 - - - 0.0093 - - - 0.0153 0.0116 - - -
Llama-3.3-70B 0.0198 - - - 0.0015 0.0028 - - - 0.000 - - - 0.0000 0.0000 - - -

BERT ATLOP-DOREMI 0.7480 0.6297 0.6914 0.7186 0.6591 0.6023 0.5004 0.3628 0.4299 0.3795
DREEAM-DOREMI 0.7701 0.6576 0.7037 0.7354 0.6799 0.7250 0.6640 0.4210 0.5326 0.5153

RoBERTa ATLOP-DOREMI 0.7486 0.6311 0.7023 0.7247 0.6648 0.6232 0.5315 0.3489 0.4206 0.3784
DREEAM-DOREMI 0.7939 0.6894 0.7267 0.7588 0.7075 0.7575 0.7032 0.4498 0.5644 0.5486

UGDRE.
When DOREMI exploits Re-DocRED for iterative training

(Table A.9), combining DOREMI with UGDRE (dataset D+U)
consistently outperform UGDRE in terms of precision and ign-
Precision, reporting a relative of up to +5.4% and +7.1%, re-
spectively.

Appendix B. Large Language Models Performance

Recent works explored LLMs for DocRE [7, 33, 35]. To en-
hance their performance, logical reasoning [30, 32] and data
augmentation [31, 36, 37] have been proposed to integrate ad-
ditional filtering. Although this is a promising avenue, LLMs
still proves to be ineffective for DocRE. The primary reason
is that LLMs often overestimate positive relations between en-
tities, as they struggle to handle the large proportion of nega-
tive examples present in DocRE datasets. A secondary factor
is their difficulty with multi-label classification. Indeed, LLMs
frequently predict a single relation even when multiple relations
are expressed for the same entity pair within a document [7].

This section compares the performance of models trained
with DOREMI DDSs and LLMs. To obtain the LLMs predic-
tions, inspired by [31], we exploit a zero-shot prompt-based ap-
proach using the same prompt for all LLMs. We use two LLMs:
Llama 3.3 70B Instruct [38] and GPT-4.1 [39]. These two mod-
els were chosen primarily for their availability and compatibil-
ity with our computational resources. To run GPT-4.1, we used
the Azure OpenAI Batch API in the Azure AI Foundry Portal
and set the LLM temperature to 0.75. To run Llama 3.3 70B
Instruct, we developed a Python script that exploit Ollama.9

We empirically set num_predict to 1, 000, temperature to
0.7, and top_p to 0.1. Due to limited computational resources,

9https://github.com/ollama/ollama

we opted for llama3.3:70b-instruct-q4_0, 10 a 4-bit quan-
tized version of Llama 3.3 70B Instruct. Llama 3.3 70B Instruct
was run on a Mac Studio 2025 with 512 GB of memory and the
Apple M3 Ultra chip. We report the prompt template we used
in Figure B.8.

Table B.10 reports the micro-averaged results for the LLMs
compared with two state-of-the-art models trained with the
DOREMI DDS. Table B.10 (a) reports the performance of all
the models evaluated in the DocRED dev dataset. ATLOP and
DREEAM are trained on the DOREMI DDS produced using
the DocRED dataset during training. Table B.10 (b) evaluates
the models in the Re-DocRED test dataset. In this configura-
tion, ATLOP and DREEAM are trained on the DOREMI DDS
constructed with iterative training on the Re-DocRED dataset
during training.

Both LLMs underperform relative to state-of-the-art mod-
els, exhibiting a substantial drop in performance. GPT out-
performs LLama, achieving a precision of nearly 20% and an
F1 score of 8% on the DocRED development set, while on the
Re-DocRED test dataset precision reaches 16% and F1 is ap-
proaching 6%. GPT struggles in recall, obtaining only 5%
on the DocRED development set. Indeed, GPT predicts 3, 422
triples for the documents in the DocRED development dataset
– regardless of correctness – while the ground truth contains
12, 275 triples. Llama confirms this pattern, with recall being
ten times lower than precision. In this case, the LLM returned
only 1, 351 triples in the DocRED development documents, ir-
respective of whether they were correct. Furthermore, GPT and
Llama predicted 11 and 3 relations, respectively, outside of Do-
cRED relations, highlighting the tendency of LLMs to halluci-
nate.

Results indicate that LLMs remain less effective than current
approaches for DocRE. Furthermore, these findings justify our

10https://ollama.com/library/llama3.3:70b-instruct-q4_0
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You will be given a document from Wikidata and a list of entities identified in the document. For each entity, you will 
be given its identifier and a list of all the mentions of the entity in the document. For each mention, you will be given 
the textual mention, the type of the entity, the position in the text, and the sentence in which the mention appears.  

For all possible entity pairs, your task is to predict whether the document contains any relation between the entity 
pair. You must return a list of dictionary with keys 'h', 't', and 'r'. 'h' contains the id of the subject entity, 't' contains the 
id of the object entity, and 'r' contains a list of the predicted relation(s). The first entity (key 'h') is the subject of the 
relation, while the second entity in the pair (key 't') is the object of the relation. You will also be given a set of relation 
to choose from.  

The set of relations is formatted as a dictionary where the key is the identifier of the relation and the value is a 
dictionary with the name of the relation (key 'name') and a brief textual description (key 'description'). You must 
predict what relation is expressed in the document between the two entities by choosing one of more relations from 
the given dictionary of relations. You must reply with the identifier of the one or more relations identified.  
If you think no relation is described in the document between the two entities, reply with ‘999'. 

### DOCUMENT ### 
[input_document] 

### ENTITIES ### 
[list_of_entities] 
Format: Entity e_id: [{‘pos’: [x, y], ‘type’: …, ‘sent_id’: z, ‘name’: …}] 
… 

### POSSIBLE RELATIONS ### 
[list_of_relations] 
Format: [‘Pxyz’: {‘name’: …, ‘description’: …}, …] 

### QUERY ### 
For the given document, predict one or more relations for all possible entity pairs. You must choose relations from 
the list provided in ''POSSIBLE RELATIONS''. You must return a list of dictionary with keys 'h', 't', and 'r'.'h' contains 
the id of the subject entity, 't' contains the id of the object entity, and 'r' contains a list of the predicted relation(s). 

Figure B.8: Prompt template for DocRE. For each document, information between square brackets was integrated accordingly. The same prompt is used for both
LLMs.

decision not to use LLMs to annotate new data for inclusion in
the DOREMI loop, as their predictions are unreliable and may
introduce even more noise than DS.
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