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Abstract

Knowledge Graphs (KGs) store structured factual knowledge by
linking entities through relationships, crucial for many applica-
tions. These applications depend on the KG’s factual accuracy,
so verifying facts is essential, yet challenging. Expert manual
verification is ideal but impractical on a large scale. Automated
methods show promise but are not ready for real-world KGs.
Large Language Models (LLMs) offer potential with their seman-
tic understanding and knowledge access, yet their suitability and
effectiveness for KG fact validation remain largely unexplored.

In this paper, we introduce FactCheck, a benchmark designed
to evaluate LLMs for KG fact validation across three key di-
mensions: (1) LLMs internal knowledge; (2) external evidence
via Retrieval-Augmented Generation (RAG); and (3) aggregated
knowledge employing a multi-model consensus strategy. We
evaluated open-source and commercial LLMs on three diverse
real-world KGs. FactCheck also includes a RAG dataset with 2+
million documents tailored for KG fact validation.

The experimental analyses demonstrate that while LLMs yield
promising results, they are still not sufficiently stable and reli-
able to be used in real-world KG validation scenarios. Integrat-
ing external evidence through RAG methods yields fluctuating
performance, providing inconsistent improvements over more
streamlined approaches - at higher computational costs. Simi-
larly, strategies based on multi-model consensus do not consis-
tently outperform individual models, underscoring the lack of a
one-fits-all solution. These findings further emphasize the need
for a benchmark like FactCheck to systematically evaluate and
drive progress on this difficult yet crucial task.
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1 Introduction

Knowledge Graphs (KGs) are machine-interpretable, directed,
labeled multigraphs in which nodes represent entities or con-
cepts, and edges denote typed semantic relations. They pro-
vide a structured representation of real-world knowledge, en-
abling reasoning, integration, and querying across information
sources [23, 26, 47]. KGs have been deployed in a wide range
of applications [23, 24], including: (1) web search for semantic
understanding of queries and content [16, 41]; (2) e-commerce,
for recommendation [56] and conversational agents [49]; (3) so-
cial networks, for modeling user interests [18, 41]; and (4) other
domains such as finance [3], transport [21], and energy [72].
However, the effectiveness of downstream applications depends
on the accuracy of the KG’s facts. Each individual piece of knowl-
edge, which is typically represented as an <S,P,0> triple (i.e.,
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(Subject)- Predicate-»-(Object)), must be factually correct. In addition, the
reliability of the entire KG depends not only on the correctness
of these atomic facts, but also on the way they are intercon-
nected [8, 50].!

A crucial step after the creation of the KG is assessing the
veracity of its facts [23, 51]. This involves determining how ac-
curately the data reflects real-world entities, relationships, and
phenomena. Fact validation presents a significant challenge and
is expensive [36, 37]. The most reliable option involves manual or
computer-assisted annotation by human experts [42, 66]. How-
ever, this process is extremely time-consuming [12, 43]. Since
experts often need to audit facts relying on multiple external refer-
ence sources, in large-scale KGs (e.g., DBpedia [33] or YAGO [22]),
verifying each individual triple can take several minutes, making
manual inspection and correction of errors infeasible at scale.

As a result, automated fact-checking methods [11, 14, 58, 62,
63], often based on rules and enforceable constraints [10, 40],
have emerged as more scalable alternatives to address the time
and cost limitations of human-based solutions. While these meth-

ods are effective for well-defined and frequently occurring facts [29]),

they fall short when it comes to generalizing across the wide
variety of facts found in real-world KGs. Manual definition, on
the other hand, is both difficult and expensive. Therefore, (semi-)
automatic methods that extract rules and constraints can be em-
ployed. Nonetheless, these methods predominantly cater to rules
that identify frequent positive instances and encounter difficul-
ties with cases pertaining to infrequent facts or necessitate the
application of negative rules [45].

These limitations have led to the adoption of fact-checking sys-
tems with machine/deep learning solutions [17]. In this realm, a
viable approach could be to utilize Large Language Models (LLMs)
for fact-checking, as they have demonstrated near-human-level
performance on various tasks [46]. Within this framework, LLMs
offer various advantages: they can extract contextual information
from text, comprehend the semantics of statements, and possess
an extensive internal knowledge base [48, 65]. However, current
LLMs generate hallucinated and unfaithful responses [60]. Addi-
tionally, recent work has highlighted that LLMs are particularly
problematic for fact validation tasks, exhibiting systematic biases
and knowledge gaps that can affect their reliability [59]. To com-
bat the limitations caused by knowledge cutoff and hallucination
in LLMs, current systems built on top of LLMs often implement
a Retrieval-Augmented Generation (RAG) approach in which the
LLM is supplemented with data from external sources to improve
their responses [28]. However, despite all the recent progress in
LLM research and the capability of LLMs to tackle a wide range
of tasks, there appear to be no existing benchmarks specifically
measuring the performance of LLMs in KG fact validation [51].

Hence, we present FactCheck, a general-purpose benchmark
designed to assess LLMs in the validation of KG facts across three

1We use the terms fact, statement, and triple interchangeably depending on the
context.
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principal dimensions: (1) LLM internal knowledge; (2) external
evidence through Retrieval-Augmented Generation (RAG); and,
(3) synthesized knowledge from multiple models.

FactCheck relies on a validation pipeline that transforms
structured triples into natural language statements for evalu-
ation of their factual accuracy. The validation procedure begins
with KG entities and relations, derives structured triples, checks
them against reliable sources, and calculates accuracy scores.

FactCheck is driven by the following research questions (RQs):

RQ1: How effective are LLMs at KG fact-checking when relying
only on their internal knowledge?

RQ2: Does external evidence improves the ability of LLMs to fact-
check KGs?

RQ3: Does aggregating predictions from multiple LLMs lead to
more reliable validation of KG facts?

RQ1 targets a recent debate concerning LLMs functioning as
Knowledge Bases (KBs), aiming to evaluate how factual and com-
plete the internal knowledge of an LLM is, for both previously
seen and unseen knowledge [19, 20, 71]. We do not prompt the
LLM to retrieve knowledge to evaluate its completeness and accu-
racy. Instead, we ask the LLM to judge the accuracy of externally
provided facts, which requires it to depend solely on its internal
knowledge. Our focus is directed towards this research approach,
acknowledging that studies indicate querying an LLM for the
verification of information accuracy produces more favorable
outcomes compared to prompting it to generate or assess its own
content [27, 31].

RQ2 targets the effectiveness of augmenting LLMs with ex-
ternal evidence to improve KG fact-checking, contributing to
ongoing discussions around RAG and its role in factual verifi-
cation [28, 53, 70]. While classical RAG approaches often out-
perform LLMs that rely solely on internal knowledge, recent
findings indicate that RAG effectiveness can diminish in complex
or multi-turn settings, where context management and evidence
selection become more error-prone [32]. Moreover, integrating
external evidence can introduce contextual bias, where the model
overly trusts retrieved content [34]. With FactCheck, we aim to
foster research on whether and under what conditions external
evidence helps KG fact validation, to what extent, and under
which conditions.

RQ3 targets a growing body of work investigating whether ag-
gregating outputs from multiple LLMs can lead to more accurate
or reliable factual verification [7, 54]. While individual LLMs may
vary in factual accuracy, reasoning patterns, and susceptibility
to hallucinations, recent studies suggest that combining multiple
models — via voting, consensus, or arbitration mechanisms - can
mitigate individual model biases and increase robustness [64, 67].
However, this approach introduces its own challenges, including
disagreement resolution, scaling cost, and the risk of amplifying
shared misconceptions among models trained on overlapping
data. FactCheck can help explore whether ensemble-style rea-
soning from multiple LLMs can improve the reliability of KG
fact-checking.

Contributions. We propose FactCheck, a benchmark for KG
fact validation using LLMs, which comes with several advantages:

(1) FactCheck integrates various LLMs for KG fact validation. The
benchmark evaluates these models using both their internal
knowledge and external evidence through RAG. It also explores
consensus-based verification via majority voting strategies. Ex-
periments with mid-sized (7-9B parameters) and commercial
LLMs highlight the challenges of the task.
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(2) FactCheck is built upon three real-world KG datasets: Fact-
Bench [14], YAGO [43], and DBpedia [38], covering broad spec-
trum of knowledge, ranging from everyday facts to complex,
domain-specific information, ensuring a diverse and represen-
tative evaluation of fact validation capabilities.

(3) FactCheck includes a large-scale RAG dataset featuring sev-
eral questions paired with corresponding Google Search En-
gine Results Pages (SERPs). The dataset comprises 2M+ docu-
ments covering a broad range of factual information, making
it one of the most comprehensive and publicly available RAG
resources for KG fact validation. FactCheck includes a mock
API that simulates real search APIs, allowing users to repro-
duce data retrieval, test retrieval methods, and extend RAG
methods without direct access to search engines.

(4) A dedicated web application (https://factcheck.dei.unipd.it/),
enabling users to visually explore and analyze each step of the
verification process, also featuring error analysis modules that
categorize reasoning errors, enabling systematic identification
of LLM limitations in fact-checking scenarios.

(5) FactCheck enables comprehensive evaluation by combining
performance metrics with resource usage analysis. Model pre-
dictions are evaluated against gold-standard labels to assess
accuracy and reliability. The benchmark also tracks computa-
tional costs (inference time and token usage).

Evaluation with different methodologies and datasets high-
lights the difficulty and inherent complexity of the fact validation
task in KG. The main insights of our work are three-fold: First,
while LLMs show promising capabilities in KG fact validation,
they are still far from being reliably deployed in real-world valida-
tion scenarios. Second, integrating external knowledge through
RAG vyields fluctuating performance, providing inconsistent im-
provements over more streamlined approaches at significantly
higher computational costs. Finally, consensus-based strategies
using multiple models are unable to consistently outperform in-
dividual models. Altogether, these results highlight the task’s
difficulty and complexity, underscoring the need for a dedicated
benchmark to drive progress.

Outline. The rest of the paper is organized as follows. In Sec-
tion 2, we review related work on automated KG fact-checking
and benchmark development. In Section 3, we introduce the
FactCheck benchmark. We detail the FactCheck construction
in Section 4, covering both dataset selection and RAG corpus
creation. Section 5 outlines the experimental setup, with results
discussed in Section 6. Section 7 provides a qualitative error anal-
ysis of failure cases. Finally, in Section 8, we draw final remarks.

2 Related Work
2.1 Automated KG Fact Checking

Fact-checking methods can be categorized into approaches that
directly utilize the KG to find a supporting path for the given
statements [29, 57, 58, 61] and others relying on external refer-
ence sources to find supporting or conflicting evidence [14, 62].
Table 1 represent comparative analysis of these two paradigms.

(1) Internal KG-Based Fact Checking. Knowledge Stream
(KStream) and Relational Knowledge Linker (KLinker) [58] are
unsupervised, network-flow-based approaches designed to as-
sess the truthfulness of factual statements expressed as <S,P,0>
triples. KStream models a KG as a flow network, where the path
carries flow from a subject to an object to support or refute a
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Table 1: Comparative analysis of Internal KG-Based versus External Evidence-Based fact-checking mechanisms.

Feature Internal KG-Based Fact Checking External Evidence-Based Fact Checking

Principle Coherence: Consistent with graph patterns. Correspondence: Aligns with external sources.

Primary Evidence Graph topology, paths, and flow networks Unstructured text, webpages, and search snippets

Assumption Derives negative signals from missing links based on local completeness. ~ Missing links are verified against external data under incompleteness.
Mechanism Path mining, link prediction. IR, NLP, RAG.

Handling Negatives  Synthesized via sampling strategies (e.g., [29]).
Trade-offs (+) Fast, Consistent. (-) Misses graph errors.
Examples KStream [58], PredPath [57], COPPAL [61].

Retrieval failure or contradiction.
(+) High validity. (-) Slow, source-dependent.
DeFacto [14], KGValidator [5], FactCheck (Ours).

given statement. KLinker, on the other hand, focuses on discover-
ing relational paths that link entities to each other. COPPAL [61]
proposes a corroborative meta-path to find statement-supporting
paths. These approaches focus only on positive evidential paths
and are heavily restricted due to the incomplete nature of KGs.
Approaches like PredPath [57] attempt to utilize both negative
and positive paths to cover a broader range of factual statements.
PredPath assigns weights to discriminative predicate paths by
considering only correct examples, ignoring counterexamples.
This can lead to improperly weighted rules. In addition, Kim and
Choi [29] presents an unsupervised rule-based approach that
significantly outperforms the state-of-the-art unsupervised ap-
proaches in this area. They calculate a truth score for the given
statement by finding positive and negative evidential paths in a
KG, generating examples for the training phase, creating a model
for learning from positive and negative rules, and scoring the
triple based on established evidence.

While these methods are effective, they rely entirely on the
underlying KG, which may contain errors or be incomplete; thus,
they cannot be used to assess the accuracy of the KG itself.

(2) External Evidence-Based Fact Checking. DeFacto [14]
is a supervised learning method that validates KG triples using
evidence retrieved on the Web. To compute an evidence score,
this method integrates trustworthiness metrics with textual ev-
idence. Syed et al. [62] proposed a fact validation method that
uses textual evidence from a static reference corpus as exter-
nal knowledge. They verbalized triples into natural language,
queried a search engine to retrieve similar corpus sentences, and
then extracted evidence and features from these sentences to
estimate each KG triple’s confidence with a trained model. Re-
cently, Boylan et al. [5] introduced KGValidator, a framework
for the automatic evaluation of KG completion models using
LLMs. KGValidator assesses predicted triples by leveraging mul-
tiple sources of context, including the LLM’s internal knowledge,
user-provided textual documents, and web resources. In contrast
to this methodological contribution, FactCheck focuses on pro-
viding the supporting evaluation infrastructure - i.e., datasets,
metrics, and curated evidence corpora — needed to systematically
assess and compare such validation approaches.

Aligning with prior work that incorporates external sources
for fact verification [5, 14, 62], FactCheck allows LLMs to em-
ploy external evidence retrieved from Web SERPs. Additionally,
FactCheck offers several LLM-based baselines, enabling a com-
parative evaluation of LLM with external evidence-driven solu-
tions. Moreover, FactCheck assesses LLM performance across
three real-world KG datasets (13,530 facts) tailored for the task,
supported by 2M+ retrieved documents as external evidence.

2.2 Benchmarks and Datasets

CRAG [69] is a benchmark designed to evaluate the effective-
ness of RAG systems, with a focus on factual accuracy. It includes

4,409 Question-Answer pairs spanning five domains and eight
question categories. To simulate realistic usage scenarios, CRAG
offers mock APIs for web and KG searches. The benchmark specif-
ically targets challenges such as answering less popular or rapidly
evolving facts, assessing LLM performance across varying levels
of entity popularity and temporal relevance. While CRAG and
FactCheck both utilize RAG, they address fundamentally differ-
ent problems with distinct evaluation goals. Indeed, FactCheck
evaluates KG fact validation, prioritizing accuracy and consis-
tency. CRAG cannot replace FactCheck because high-performing
QA models often fail at the strict, granular logic required to
validate isolated KG triples. Additionally, FactCheck provides
detailed information on computational costs and resource effi-
ciency, both aspects not extensively covered by CRAG. Hence,
although related, these benchmarks address different aspects of
factual verification.

Beyond CRAG, there are several pipelines and shared tasks for
fact-checking purposes targeting textual claims. RumourEval [15]
evaluated classification systems by analyzing social media posts
by stance detection and rumor veracity verification, employing a
dataset containing data from Twitter and Reddit. CLEF Check-
That! [1] offers sentence-level subjectivity detection in news
articles. ClaimBuster [2] introduced an automated end-to-end
fact-checking pipeline integrating claim detection, matching, and
verification. As said, these benchmarks primarily target unstruc-
tured textual claims and cannot be used for KG fact verification.

Few datasets have been proposed for KG verification [14, 38,
43]. A key one is FactBench [14], built from DBpedia [33] and
Freebase [4] KGs to evaluate validation systems on systematic er-
rors. Other datasets include YAGO [43] and DBpedia [38], which
consist of samples drawn from their respective KGs and manu-
ally annotated by experts for correctness. While these datasets
have been employed in both manual and automated verification
settings, they have seen minimal to no use with LLM-based ap-
proaches. Hence, we employ FactBench, YAGO, and DBpedia
in FactCheck, as they capture complementary aspects of fact
verification challenges, enabling a multifaceted evaluation of
LLM-based strategies. Another related dataset is FactKG [30],
designed for fact verification over KGs. However, FactKG uses
KGs to verify textual claims, whereas our work takes the opposite
direction: using external evidence to help LLMs validate KG facts.

3 FactCheck

This section details the strategies used in FactCheck to address
the study’s RQs. The benchmark includes multiple strategies us-
ing both open-source and commercial LLMs. In §3.1, we present
two approaches that rely solely on LLMs’ internal knowledge
to verify KG facts (RQ1). In §3.2, we introduce a RAG approach
that augments LLMs with external evidence (RQ2). Finally, §3.3
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Figure 1: Overall overview of the FactCheck benchmark.

describes a multi-model consensus strategy that aggregates pre-
dictions from multiple LLMs to improve verification accuracy

(RQ3).

3.1 LLM Internal Knowledge

To address RQ1, FactCheck employs two different strategies:

Direct Knowledge Assessment (DKA) is a simple strategy
consisting of a basic, direct prompt for the LLM without any fur-
ther guidance. DKA aims to evaluate the ability of LLMs to verify
facts using only internal knowledge. We use DKA as the baseline
for comparing different LLMs and more advanced strategies. An
example is reported in the top left part of Figure 1(a).

Guided Iterative Verification (GIV) (see the bottom left
part of Figure 1(a)) is an iterative prompting approach leveraging
a structured prompt template that outlines the expected output
format, and, optionally, enforces dataset-specific constraints. If
a model’s output is non-conformant, the system triggers a re-
prompting, explicitly flagging the non-compliance. Responses
that repeatedly fail to meet the criteria are marked as invalid.
We consider both zero- and few-shot settings. In the few-shot
setting, we include a small set of correctly evaluated triples as
examples to guide the model’s understanding of the task. These
examples are shared across datasets and KG-independent at the
semantic level, while their encoding is adapted to the target KG
to align with predicate and schema conventions.

3.2 External Knowledge

To address RQ2, we enhance LLMs with RAG. Given a KG triple ¢,
we retrieve a set of documents D containing potentially support-
ing or refuting evidence. We implement this through a multistage
pipeline comprising four main phases: (1) triple transformation,
(2) question generation and ranking, (3) document retrieval and
filtering, and (4) document processing and chunking. Figure 1(b)
illustrates the core components of the RAG-based verification
engine in FactCheck.

In the Triple Transformation phase (1), structured KG triples
are converted into human-readable sentences. This transforma-
tion is performed using an LLM to address the substantial vari-
ability in how different KGs represent (S, P, O) data. KGs fol-
low heterogeneous conventions for encoding triples, and these
source-specific formats often hinder effective information re-
trieval. Common issues include (1) KG-specific namespaces (e.g.,
dbpedia.org/resource/:term:); (2) special notation such as under-
scores or camelCase (e.g., isMarriedTo, Alexander_II_of Russia);
and (3) predicates that lack sufficient grammatical or seman-
tic context. Such representations can restrict search results to
the original source pages from which the triples were extracted,
thereby introducing retrieval bias and limiting coverage during
evaluation. By contrast, natural language reformulations facil-
itate the discovery of a broader range of relevant web sources.
We define this process as a transformation function s = fijm ()
that maps a triple ¢ to a natural language sentence s.

In the Question Generation and Ranking phase (2), for
any given sentence s, we prompt an LLM to generate a set of
candidate queries Qs = {q1, 42, - - ., gk, }- The goal of generating
multiple questions is to broaden the semantic coverage of the orig-
inal triple, improving the chances of retrieving relevant evidence
- even when the input is ambiguous, noisy, or underspecified.
Generating multiple questions also helps mitigate the paraphras-
ing bias that the LLM may introduce when turning triples into
natural language. By formulating several distinct questions, we
broaden the range of possible interpretations of a given triple,
thereby weakening the link to any single facet that might other-
wise be imposed by one particular LLM-generated paraphrase. To
identify the most informative queries, we apply a cross-encoder
model (jina-reranker-vi-turbo-en), which corresponds to the nor-
malized dot product between the cross-encoder’s final repre-
sentation and a learned relevance vector (i.e., a sigmoid-scaled
dot-product score). This score reflects the semantic proximity
between a candidate query q € Qs and the original sentence
s. The resulting set is Qanked — {91).9(2)-- - 9(k,) }» where
sim(q(;),s) > sim(q(j41), s) foralli € {1,2,..., kg—1}. We retain
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the top-7 queries, denoted as QZ, using a predefined threshold
7 € [0, 1] to ensure only the most relevant queries are used.

In the Document Retrieval and Filtering phase (3), we is-
sue each query in QI to Google Search using specific parameters
to ensure consistency. We set Ir = “lang_en” and hl = “en” to
enforce English content and interface settings, and gl = “us” to
standardize the geolocation to the United States, thereby mit-
igating local personalization bias. Using num = “100”, we col-
lect the top nmax = 100 retrieved webpages, denoted as R(q) =
{w1,w2,...,wn,,. }. For each webpage w; € R(q), we extract
its textual content, denoted as text(w;). The set of documents
retrieved for a given query q is then defined as D(q) = {d; =
text(w;) | wi € R(q)}. To obtain the full document pool associ-
ated with the original triple ¢, we take the union over all queries
in Qf: D = Ugeqr D(g). To ensure evidence independence and
avoid circular verification, we define Skg as the set of original
KG sources - for instance, Wikipedia entries when verifying
facts from DBpedia and FactBench datasets. We use this set to
filter out any retrieved documents that directly originate from
these sources. The resulting filtered document set is defined as
Disiltered = {d € D | source(d) ¢ Skc}-

Finally, in the Document Processing and Chunking phase
(4), we use a cross-encoder to identify the k; most relevant
documents with respect to the sentence s. For each document
d € Dgiltered, @ similarity score simgy(d, s) is computed using
the same approach as above. The top k; documents, ranked by
similarity, form the final set Dgpa1 = {d1,d2, .. ., dk, }. Each doc-
ument in Dy, is segmented into smaller, overlapping passages
using a sliding window chunking strategy. These chunks are
subsequently used as contextual input in the LLM prompt during
the fact validation stage.

3.3 Multi-Model Consensus

Since LLMs can output different answers for the same fact-checking
task, we also explore a model consensus strategy (Figure 1(c)).
Building on §3.1 and §3.2, let M = {M, M2, M3, M4} be the set of
LLMs. For each triple t, each model M; € M produces a binary
verdict v;(t) € {0, 1}, where 0 means “false” and 1 means “true”.

We employ a simple majority vote strategy to determine the
final verdict. The consensus decision Vg, (t) for a given triple ¢
is:

1 i Y () 23
Vanal(t) = { tie if X4 0;(¢) =2
0 otherwise

The strategy aims to mitigate errors by reducing the impact of
outlier predictions. In the event of a tie, we apply a conflict reso-
lution strategy. Let Mjyqge be the final judge module responsible
for breaking ties. We explore two approaches for defining Mjuqge:
(1) A higher-parameter variant of one of the models in our set
M, selected based on its consistency score CAyy. This score
represents the proportion of instances where the model’s
output agrees with the majority prediction across datasets —
serving as a proxy for its alignment with correct outcomes.
We test both the most consistent (highest CAjs) and least
consistent (lowest CAs) models, upgrading them to higher-
parameter versions (e.g., Gemmaz2:9B — 27B).
(2) A commercial model with a different architecture and train-
ing pipeline - such as GPT-40 mini - to offer an independent
perspective in resolving ambiguous cases.
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4 Benchmark Construction

In this section, we present the entire pipeline for constructing
the FactCheck benchmark. First, in §4.1, we detail the process
of collecting triples from existing KG datasets, along with the
creation of a new dataset specifically tailored for the RAG method-
ology. Next, in §4.2 and §4.3, we describe the LLMs, the evalua-
tion metrics, and the automated assessment procedures used in
FactCheck.

4.1 Datasets

The FactCheck dataset consists of two main components: (i)
triples derived from three real-world KGs, and (ii) content re-
trieved from Google SERPs. This section describes each of these
components and introduces the mock API, which mimics a real-
istic scenario and provides standardized access to the dataset for
reproducible experimentation.

KG Datasets. We include triples from three real-world and
widely used KG datasets — FactBench, YAGO, and DBpedia. Note
that we employ these datasets with a snapshot-based semantics:
a triple is deemed true if it is supported by the underlying KG
snapshot used to build it, and false otherwise. Table 2 summarizes
the key statistics for each of these datasets.

Table 2: Summary of FactBench, YAGO, and DBpedia
datasets.

FactBench YAGO DBpedia

Num. of Facts 2,800 1,386 9,344
Num. of Predicates 10 16 1,092
Avg. Facts per Entity 2.42 1.69 3.18
Gold Accuracy (u) 0.54 0.99 0.85

FactBench is a multilingual benchmark developed by Ger-
ber et al. [14] to evaluate fact validation algorithms. It includes
ten relation types and supports English, German, and French. In
FactCheck, we focus exclusively on the English subset. Positive
(correct) facts are sourced from DBpedia and Freebase, while neg-
ative (incorrect) facts are generated systematically by altering
the correct ones — ensuring adherence to domain and range con-
straints. We use a configuration with a proportion of positive facts
of u = 0.54, achieved by mixing correct facts with incorrect ones
generated through various negative sampling strategies [37].

YAGO is an evaluation dataset sampled from the YAGO KG,
originally introduced by Ojha and Talukdar [43] and widely
adopted for KG accuracy estimation [12, 36, 37]. It comprises
1,386 facts spanning 16 distinct predicates, with an average of
1.69 facts per entity. All facts are annotated by crowdworkers,
resulting in a gold standard accuracy of p = 0.99. This high accu-
racy presents a unique challenge for fact-checking, as LLMs may
be biased toward classifying all facts as correct, thereby inflating
performance metrics.

DBpedia is an evaluation dataset sampled from the DBpedia
KG, originally introduced by Marchesin et al. [38]. It was con-
structed using a combination of sampling and active learning
techniques, with both expert and layman annotators involved
to ensure high annotation quality. The triples were acquired
from the 2015-10 English version of DBpedia, with subject enti-
ties required to be part of triples that include rdfs:1label and
rdfs:comment predicates. To focus exclusively on factual asser-
tions, T-Box triples — those representing ontological entities and
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schema-level relationships — were excluded, retaining only A-
Box assertions, which represent concrete factual claims. Each
triple was annotated by at least three annotators, resulting in a
dataset of 9, 934 triples with a gold standard accuracy of y = 0.85,
covering 1,092 distinct predicates.

RAG Dataset. We constructed a RAG dataset comprising
questions derived from KG facts and corresponding search re-
sults. This dataset was created as support to effectively evalu-
ate LLM performance in fact validation tasks involving external
knowledge. The dataset consists of two main components: the
generated questions and their associated search results obtained
from Google SERPs.

For Questions, we used an LLM to generate kg = 10 distinct
questions for each transformed triple s, aiming to explore dif-
ferent facets of the underlying fact. For dataset construction,
we included all questions that were successfully extracted from
the model’s output. Each question is published along with its
corresponding similarity score, computed with respect to the
transformed triple. FactCheck comprises a total of Q = 130, 820
questions generated for 13, 530 facts. Each fact is associated with
a variable number of questions (q;) ranging from min(q;) = 2
to max(q;) = 10, with a mean of yg, = 9.67 and a median of
Gr = 10.00.

Each question is assigned a similarity score § € [0, 1] that
quantifies its semantic closeness to the transformed triple. Across
all questions, the similarity scores exhibit a mean of y5 = 0.63
and a median of § = 0.66. The standard deviation is o5 = 0.25,
indicating moderate variability. The first quartile is Q1 = 0.44 and
the third is Q3 = 0.84, resulting in an Inter Quartile Range (IQR)
of IQR = Q3 — Q1 = 0.40, which confirms substantial variation
in similarity scores across the dataset.

To further analyze this distribution, we categorize the ques-
tions into three similarity tiers: high similarity (§ > 0.70), consti-
tuting 45% of the dataset; medium similarity (0.40 < § < 0.70),
accounting for 34%; and low similarity (§ < 0.40), making up the
remaining 21%. This distribution shows that 79% of the dataset
consists of questions with at least moderate similarity to the
transformed triple (6 > 0.40), and nearly half show high similar-
ity. This range of similarity levels covers both semantically close
and more loosely related interpretations of each fact.

Regarding Google Search Results, for each fact, we submit-
ted the transformed original triple along with the top three gen-
erated questions - ranked by their similarity scores — to Google
Search. After parsing the HTML responses, we retrieved each
URL using the GRequests Python library. The content of the re-
sulting webpages was extracted using the newspaperk 2 Python
package.

The corpus consists of D = 2,090,305 documents across 13,530
triples. Each triple ¢ is linked to d; documents, with min(d;) = 0,
max(d;) = 337, mean jig, = 154.51, and median d; = 160. The
slightly higher median indicates a mild negative skew, with most
triples having document counts around or just above the mean.

We define &Etext C D as the subset of documents with empty
text content. This subset contains |Etext| = 263, 515 documents,
representing the 13% of the entire collection. Consequently, the
text coverage rate — i.e., the proportion of documents presenting
text content — is 1 — |EStext|/|D| = 0.87 (87%). This high cover-
age rate supports the reliability of the constructed document
collection.

Zhttps://newspaperdk.readthedocs.io
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Table 3: Summary of average time and token usage for each
step in the RAG dataset generation pipeline.

Task Avg. Time Avg. tokens
Question Generation 9.60 sec 672.58
Get documents (Google pages) 3.60 sec -
Fetch documents for each triple 350 sec -

In Table 3, we report the time consumption and token ex-
penditure incurred during the generation of the RAG dataset.
Overall, question generation requires an average of 9.60 seconds
per fact, whereas the complete Google results retrieval process
takes approximately 364.4 seconds.

To ensure fairness and reproducibility in evaluation, we gener-
ated all questions and collected the corresponding Google SERP
results in advance. This provides a consistent evidence base for
LLMs, avoiding discrepancies caused by changes in live search
outputs. The complete dataset is publicly available on our Hug-
gingFace project page and accessible via the mock APL3

Mock API. In FactCheck, we integrate a web search-like API
for content retrieval to simulate realistic scenarios for RAG. This
API facilitates reproducible benchmarking by offering standard-
ized access to pre-collected search data, thereby removing tem-
poral variability in search results.

For each fact in the considered datasets, we issued queries
using both the transformed triple and the top three generated
questions. We stored the first 100 results for each query from
Google SERP, and subsequently retrieved and preserved the ac-
tual content of each linked webpage. As previously discussed, we
filtered out sources directly related to the original fact to avoid
circular verification.

We implemented standardized endpoints that emulate conven-
tional web search APIs while returning consistent results from
our dataset. Through this mock API, researchers can perform
identical retrieval operations across multiple experimental runs,
ensuring fair comparisons between different LLM configurations,
prompting strategies, and verification approaches. The mock
API can be accessed at https://factcheck-api.dei.unipd.it/. Full
documentation is available on GitHub.*

4.2 Models

We integrate four open-source LLMs in the 7-9B parameter range
as the backbone of our KG fact validation pipeline: Gemmaz2,
Qwen2.5, Mistral, and Llama3.1. We prioritize open-source mod-
els for several reasons. First, they can be deployed in diverse
environments, including settings with strict data privacy require-
ments or limited API access, as they can be hosted locally without
relying on external services. Second, they offer greater tunabil-
ity, allowing fine-tuning on domain-specific data or adaptation
to specialized fact validation tasks. Third, they are significantly
more cost-effective for large-scale applications, avoiding per-
token API costs that can become prohibitive when processing
extensive KGs. To provide a performance reference and assess
the gap between open-source and commercial solutions, we also
include GPT-40 mini, a commercial model from OpenAl

GemmaZ2:9B, developed by Google, is an open-source 9B pa-
rameter model optimized for efficiency [13], excelling in natural
language understanding and generation.

Shttps://huggingface.co/datasets/FactCheck- Al/FactCheck
“https://github.com/FactCheck- Al/FactCheck-MockAPI
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Qwen2.5:7B, from Alibaba Cloud, is an open-source 7B param-
eter model notable for improved instruction-following, reasoning,
and structured data handling [52, 68].

LLaMA3.1:8B, by Meta, is an open-source 8B parameter model
that features an extensive 128k token context window and en-
hanced multilingual support, making it suitable for long-context
and diverse language tasks [9].

Mistral:7B, developed by Mistral Al is a 7B parameter model
known for its performance and compactness balance, demon-
strated across various benchmarks [25].

GPT-40 mini, developed by OpenAl as a smaller variant of
GPT-4o, offers strong reasoning capabilities with reduced latency
and cost [44], serving as a commercial baseline for advanced
knowledge retrieval and fact verification.

4.3 Performance Metrics and Evaluation

To assess the effectiveness of the considered fact validation strate-
gies, we focus on two key measures: Class-wise F1 Score and
Consensus Alignment. These measures are chosen to account
for class imbalance, capture per-class performance, and evaluate
agreement for multi-model consensus approaches. We also eval-
uate efficiency by computing the average response time required
by each considered strategy to provide a verification response.
Class-wise F1 Scores (F1(c)) are calculated independently
for “True” (T) and “False” (F) labels to assess performance on each
single category, rather than aggregating them. This granular view
highlights potential disparities in model performance between
the two classes. The F1 score for a given class ¢ € {T, F} is defined
as:
2 - Precision(c) - Recall(c)

Fi(c) = R
© Precision(c) + Recall(c)

where Precision(c) and Recall(c) denote the precision and recall
calculated specifically for class c.

Consensus Alignment (CAs) quantifies the agreement be-
tween a given model’s predictions and the majority vote across
all evaluated facts. Specifically, for a model M, it is defined as:

1
CAy = — Z I(response(M, t) = majorityVote(t))
|G| teG

where I(-) denotes the indicator function, which evaluates to 1 if
the condition is met and 0 otherwise. Here, response(M, t) repre-
sents the prediction of model M for triple ¢, and majorityVote(t)
is the label assigned by the majority of models in the ensemble.
The CAys score ranges from 0 to 1. High CAyy identifies the
“Most Representative” model serving as the best single proxy
for the group’s consensus, and low CAy, identifies the “Outlier”
model. This indicates a model that systematically deviates from
the majority opinion.

To evaluate efficiency, we measure the fact average response
time in seconds, denoted as 8. To ensure a robust assessment that
is not distorted by extreme values, we apply an outlier removal
process based on the IQR method. Given a model-dataset pair,
let ® = {61, 0, ...,0,} be the set of model’s response times over
the n dataset facts. We start by computing the first Q1 = P25(©)
and third Q3 = P75(0) quartiles, and then derive IQR = Q3 — Q;.
Finally, we define the lower and upper bounds for acceptable
values as Ligwer = Q1 — 1.5 X IQR and Lypper = Q3 + 1.5 X IQR.
We exclude all response times outside these bounds, resulting in
the filtered set ©’ = {0 € © | Ligwer < 0 < Lupper}. The average
response time per fact is then the mean response time over the
filtered set, computed as: = ﬁ Yocer 0.
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Table 4: Configuration parameters used in the RAG
pipeline.

RAG Component Parameter

Human Understandable Text Gemmaz2:9b

Gemma2:9b
Jina-reranker-v1-turbo-en

Question Generation
Question Relevance

Relevance Threshold 0.5
Selected Questions 3
Selected Documents (k) 10

ms-marco-MiniLM-L-6-v2
bge-small-en-v1.5
Sliding Window (size = 3)

Document Selection
Embedding Model
Chunking Strategy

5 Experimental Setup

This section details the technical specifications, computational
infrastructure, and methodological framework used to implement
FactCheck. We describe the hardware environments, model con-
figurations, and procedural protocols.

To retrieve Google SERP results, we employed a Unix-based
server equipped with 2 CPU cores and 4 GB of RAM. For triple
transformation and question generation, we used a MacBook
Pro powered by an Apple M2 Max chip with 32 GB of RAM.
All other experiments involving LLMs, including prompting and
evaluation, were conducted on a Mac Studio (Model: Mac14,14)
equipped with an Apple M2 Ultra chip featuring 24 cores (16 per-
formance and 8 efficiency cores) and 192 GB of unified memory.

Open-source LLMs were executed locally using Ollama,> an
open-source framework that streamlines the deployment and us-
age of LLMs on local machines. For monitoring model behavior,
including token usage and inference time, we integrated Open-
Telemetry via tooling from the OpenLIT project.® This setup pro-
vides robust monitoring for LLMs, vector databases, and GPUs
usage.

Configuration parameters for the RAG pipeline are reported
in Table 4. These settings were determined through a series of
experiments comparing alternative configurations. The results
of these ablation studies are available in the GitHub repository.”

For multi-model consensus, we have two distinct experimental
scenarios: one using higher-parameter open-source models, and
the other using a commercial LLM, as described in §3.3. In the
open-source scenario, after computing model consistency across
datasets, we selected the models with the highest and lowest
consistency scores. We then replaced the base versions with
their larger counterparts: LLaMA3.1 (8B — 70B), Gemma2 (9B
— 27B), Qwen2.5 (7B — 14B), and Mistral (7B — nemo:12B).
In the commercial baseline scenario, we used OpenAl GPT-40
mini, providing a strong reference point for comparison with
open-source alternatives.

6 Experimental Analysis

In this section, we present a comprehensive evaluation of LLM
performance on the FactCheck benchmark, evaluating their pro-
ficiency in KG fact validation. Tables 5 and 7 report the F1 scores

Shttps://ollama.com/

®https://openlit.io/

"https://github.com/FactCheck- Al/FactCheck/blob/main/extra-experiments/
ablation_study_results/ README.md
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Table 5: Performance evaluation of fact verification systems. The assessment covers various methodologies (DKA, GIV-Z,
GIV-F, RAG). In each column, the best-performing method is highlighted in bold, and the second-best method is underlined.

Dataset Method Gemma2 Qwen2.5 Llama3.1 Mistral GPT-40 mini
F1(T) F1(F) | FI(T) Fi1(F) | FI(T) Fi1(F) | FI(T) F1(F) || FI(T) Fi1(F)

DKA | 075 074 | 055 071 | 073 074 | 068 073 052 072

FactBench GIV-Z 0.73 0.73 0.51 0.70 0.52 0.70 0.77 0.72 0.48 0.71
GIVF | 079 076 | 074 073 | 075 072 | 081 073 049 071

RAG 0.91 0.89 0.89 0.85 0.83 0.80 0.87 0.82 0.91 0.90

Mean 0.80 0.78 0.67 0.75 0.71 0.74 0.78 0.75 0.60 0.76

DKA 0.82 0.02 0.42 0.02 0.71 0.02 0.59 0.01 0.48 0.02

YAGO GIV-Z 0.88 0.03 0.53 0.02 0.52 0.02 0.75 0.02 0.51 0.02
GIV-F 0.92 0.02 0.72 0.03 0.83 0.02 0.90 0.01 0.53 0.02

RAG 0.92 0.03 0.92 0.03 0.91 0.02 0.96 0.02 0.89 0.02

Mean 0.89 0.03 0.65 0.03 0.74 0.02 0.80 0.02 0.60 0.02

DKA 0.85 0.36 0.63 0.33 0.81 0.29 0.79 0.34 0.56 0.31

DBpedia GIV-Z 0.81 0.37 0.63 0.33 0.53 0.31 0.87 0.23 0.48 0.31
GIV-F 0.85 0.35 0.78 0.36 0.69 0.32 0.89 0.20 0.36 0.30

RAG 0.79 0.38 0.82 0.39 0.74 0.33 0.82 0.38 0.75 0.37

Mean 0.83 0.37 0.72 0.35 0.69 0.31 0.84 0.29 0.54 0.32

for true and false labels separately for each model on the Fact-
Bench, YAGO, and DBpedia datasets. This analysis is organized
around the three key research questions introduced earlier.

RQ1. Table 5 provides an overview of the evaluation results
concerning the internal knowledge capabilities of LLMs. The
analysis employs three verification paradigms: Direct Knowledge
Assessment (DKA), as well as Guided Iterative Verification in
both zero-shot (GIV-Z) and few-shot (GIV-F) contexts.

We observe a sensible performance variability across models
and datasets. In the FactBench dataset, Gemma2 achieves the
robust capabilities across both classes, reaching 0.79 for F1(T)
and 0.76 for F1(F) in the GIV-F setting. In contrast, GPT-40 mini
shows a distinct performance asymmetry. While its detection
of incorrect facts is comparable to other models F1(F) ~ 0.71,
its ability to verify true facts is consistently lower F1(T) =
[0.48,0.52]. This finding challenges the prevailing view that
commercial or larger models outperform smaller or open-source
counterparts.

Among the datasets, FactBench appears to be the most favor-
able for internal knowledge evaluation, as most models maintain
a reasonable balance between F1(T) and F1(F). On the other
hand, YAGO proves to be the most challenging due to its large
nomber of correct facts. While models achieve high F1(T) scores
(up to 0.92), the F1(F) scores are negligible (0.01 to 0.03). This
drastic discrepancy indicates a strong model bias toward positive
classifications, which hinders the detection of rare incorrect facts
in highly imbalanced contexts. In comparison, DBpedia yields in-
termediate results; most models achieve respectable F1(T) scores
[0.53,0.89], yet they struggle to reliably identify incorrect infor-
mation, with F1(F) values generally remaining below 0.40.

Notably, the few-shot setup (GIV-F) consistently outperforms
both DKA and GIV-Z settings. For instance, on FactBench, Mistral
improves from 0.68 (DKA) to 0.81 (GIV-Z), while its performance
on false claims remains stable around 0.73.. These gains are par-
ticularly pronounced for mid-tier models, which benefit more
from structured prompting and exemplar-based guidance. By
contrast, already well-performing models such as Gemmaz2 show
relatively smaller performance gains.

Finding 1: Open-source models, such as Gemma2 or Mistral,
outperform commercial alternatives like GPT-40 mini when re-
lying exclusively on internal knowledge. Moreover, few-shot
prompting consistently enhances performance, although the de-
gree of improvement is influenced by dataset characteristics such
as class balance and label distribution.

RQ2. We evaluate the performance of the RAG methodology
across all models and datasets, and then compare it against the
internal knowledge-based approaches in Table 5.

Overall, RAG achieves the highest performance across nearly
all experimental settings. In particular, for the FactBench dataset,
RAG delivers substantial improvements: for example, Qwen2.5
achieves a F1(T) of 0.89, compared to 0.55 in the DKA setting.
This trend holds across evaluated models, including GPT-40 mini,
which shows a marked increase in performance - rising more
than 25% in both F1 scores — when external evidence is incorpo-
rated.

However, the impact of RAG varies significantly across datasets.
FactBench and YAGO show the greatest absolute gains, likely
due to their broader diversity of factual content. In contrast, Db-
pedia exhibits minimal improvements or even slight performance
degradation in some cases. This may be attributed to schema di-
versity, which can complicate the retrieval process and diminish
the relevance of the extracted evidence.

Finding 2: Incorporating external evidence via RAG represents
a promising path to high-accuracy fact validation. However, its
effectiveness is dependent on dataset characteristics.

RQ3. We investigate the effectiveness of multi-model consen-
sus strategies, applying majority voting across our four open-
source models. In cases of ties, we introduce a tie-breaking mech-
anism using either higher-parameter variants or a commercial
model (GPT-40 mini). Table 7 summarizes the results.

Multi-model consensus provides more reliable performance
across internal knowledge settings (DKA, GIV-Z, and GIV-F), al-
though it does not consistently outperform all individual models.
In many cases, it stabilizes performance across varying condi-
tions rather than providing top results. Interestingly, the choice of
tie-breaking model has minimal influence on final performance.
Whether we use the most consistent model (agg-cons-up), the
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Table 6: Model alignment analysis across fact validation
methodologies and datasets. Consensus Alignment (CAjy)
measure the percentage agreement between LLM pre-

dictions and majority vote decisions, with highest and
lowest performing models highlighted for each method-

dataset combination. Tie percentages indicate the fre-
quency of split decisions requiring arbitration.
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Table 8: Execution time (9, in seconds) for fact validation
across different methodologies (DKA, GIV-Z, GIV-F, and

RAG). The fastest configuration is highlighted in green,

while the slowest configuration is marked in red.

Dataset Method | Ties = Gemma2 Qwen2.5 Llama3.1 Mistral
DKA 16% 0.919 0.861 0.906 0.938
FactBench GIV-Z 21% 0.914 0.893 0.913 0.814
GIV-F 14% 0.937 0.861 0.901 0.909
RAG 6% 0.968 0.970 0.897 0.960
DKA 19% 0.798 0.797 0.916 0.920
YAGO GIV-Z 26% 0.790 0.872 0.859 0.886
GIV-F 16% 0.934 0.771 0.901 0.944
RAG 6% 0.968 0.969 0.916 0.974
DKA 17% 0.937 0.772 0.891 0.920
DBpedia GIV-Z 24% 0.948 0.875 0.765 0.758
GIV-F 17% 0.960 0.879 0.779 0.876
RAG 9% 0.953 0.961 0.848 0.945

Dataset Method Gemma2 Qwen2.5 Llama3.1 Mistral
DKA 0.21 0.18 0.30 0.17
FactBench GIV-Z 0.62 0.40 0.50 0.45
GIV-F 0.78 0.51 0.67 0.65
RAG 2.27 2.39 2.73 1.69
DKA 0.22 0.19 0.31 0.19
YAGO GIV-Z 0.62 0.41 0.45 0.47
GIV-F 0.78 0.54 0.69 0.67
RAG 2.10 2.39 2.68 1.63
DKA 0.35 0.25 0.37 0.24
DBpedia GIV-Z 0.70 0.43 0.58 0.53
GIV-F 0.89 0.56 0.69 0.78
RAG 2.55 2.55 2.87 1.77

Table 7: Performance evaluation of fact verification sys-
tems. The assessment covers multi-model consensus. In
each column, the best-performing method is highlighted
in bold, and the second-best method is underlined.

agg-cons up agg-cons down agg-
Dataset Method (Refer to Tab.6) (Refer to Tab.6) GPT-40 mini
FI(T) F1(F) | FI(T) F1(F) || FI(T) F1(F)

DKA 0.68 0.75 0.69 0.75 0.69 0.75

FactBench GIV-Z 0.74 0.76 0.64 0.74 0.63 0.74
GIVF | 082 078 | 081 079 | 080 079

RAG 0.91 0.89 0.91 0.89 0.91 0.89

Mean 0.79 0.80 0.76 0.79 0.76 0.79

DKA 0.59 0.02 0.63 0.02 0.61 0.02

YAGO GIV-Z 0.63 0.02 0.73 0.02 0.65 0.02
GIV-F 0.84  0.02 084  0.02 084  0.02

RAG 0.93 0.02 0.94 0.02 0.93 0.02

Mean 0.75 0.02 0.78 0.02 0.76 0.02

DKA 0.84 0.37 0.80 0.37 0.78 0.37

DBpedia GIV-Z 0.77 0.38 0.73 0.36 0.71 0.36
GIV-F 0.85 0.40 0.86 0.39 0.81 0.38

RAG 080 039 | 081  0.39 080 039

Mean 0.81 0.39 0.80 038 | 077 0.38

least consistent model (agg-cons-down), or GPT-40 mini, the
resulting scores remain nearly identical across all datasets and
methods. This suggests that the majority vote mechanism effec-
tively captures the most reliable signal, and the specific choice of
arbitrator is less impactful than having a consistent tie-resolution
strategy in place.

Our consistency analysis, shown in Table 6, further reveals
that agreement among models increases with methodological
complexity. For instance, RAG results in lower tie rates — ranging
from 6% to 9% — compared to 21% to 26% in GIV-Z. This reinforces
the notion that external evidence not only improves individual
model performance but also enhances cross-model alignment.
However, this increased agreement may also reflect a stronger
influence of shared contextual evidence, potentially reducing re-
liance on internal knowledge and thereby introducing uniformity
at the cost of model individuality or specificity.

Finding 3: Multi-model consensus offers a simple yet robust
mechanism to stabilize fact validation performance. While it does
not always outperform individual models, it mitigates the impact
of weaker ones. The specific choice of arbitrator has a limited
impact. Moreover, external evidence promotes greater model
alignment, though care must be taken to avoid overfitting to
contextual bias.

Computational Efficiency. Beyond accuracy metrics, we
evaluate the computational efficiency of different approaches.
Table 8 reports execution times (9, in seconds) for fact valida-
tion using the four open-source LLMs across the three reference
datasets. Within each dataset, DKA yields the lowest execution
times, ranging from 0.21 to 0.30 seconds on FactBench, from 0.19
to 0.31 seconds on YAGO, and from 0.24 to 0.37 seconds on DB-
pedia. GIV-Z shows an increase over DKA, with approximately
double the execution time on FactBench and YAGO, such as an
increase from 0.18 to 0.40 seconds on Qwen2.5 for FactBench.
GIV-F requires more time than GIV-Z, with values reaching up to
0.78 seconds. RAG results in the highest execution times across
all datasets and models, with values including 2.73 seconds on
Llama3.1 for FactBench and over 2.5 seconds for several models
on DBpedia.

The comparison within each dataset indicates that, as expected,
RAG incurs the greatest computational cost, often exceeding DKA
by a factor of six or more. The increase in execution time follows
the progression from DKA to GIV-Z to GIV-F to RAG in all con-
figurations. This pattern suggests a direct relationship between
the methodological complexity of the verification strategy and
its computational cost.

On a different note, multi-model consensus can be parallelized,
meaning that inference latency is bounded by the slowest model
rather than the sum of all models. In practice, if models ex-
hibit varying response times (e.g., 0.3-0.5 seconds), consensus
inference requires waiting for the slowest response, resulting
in slightly higher latency compared to selecting only the fastest
model. Tie-breaking further adds inference overhead, as it re-
quires an additional model query. Moreover, the coordination and
resource allocation across multiple models introduce minor but
non-negligible computational overhead. Despite this, consensus
brings benefits: the trustworthiness of the predictions increases
due to the aggregation of diverse model perspectives.
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mistral:7b (GIV-F)
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qwen2.5:7b (RAG)
mistral:7b (RAG)
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given time budget).

To characterize the balance between predictive accuracy and
computational expense, we examined the Pareto efficiency of
our methods across the different models (Figure 3). This analysis
reveals a clear separation in the utility of each strategy: RAG-
based techniques generally cluster in the upper-right quadrant,
especially with respect to the F1(F) metric, indicating that their
increased latency (x1.6s-2.9s) is exchanged for enhanced de-
tection of false claims. Conversely, DKA setups dominate the

high-speed regime, delivering sub-second inference times (<0.3
s) that are appropriate for latency-sensitive use cases, albeit with
lower sensitivity. The Pareto frontier indicates that mid-range ap-
proaches such as GIV-F (particularly when paired with Gemma2
and Mistral) strike an attractive trade-off, attaining competitive
accuracy — at times even exceeding RAG on the F1(T) metric -
while incurring substantially less computational cost than full
retrieval-based systems.
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Finding 4: Computational efficiency varies widely across meth-
ods. On the one hand, RAG requires up to 10X more processing
time compared to internal knowledge approaches. On the other
hand, consensus strategies can be parallelized to ensure only
modest latency increases with respect to internal knowledge
methods.

Cross-Dataset Generalization and Stability. To assess the
generalization capabilities and stability of LLM-based fact val-
idation, we analyze the performance across different methods
and aggregation strategies, which are visualized in the bar charts
(Figure 2). The plots display the F1 scores for the True class
(left chart) and False class (right chart) ranked by performance.
The red dashed line represents the Random Guessing baseline,
which sits at approximately 0.62 for F1(T) and 0.29 for F1(F),
and this reflects the underlying class distribution challenges in
the dataset.

RAG demonstrates the most consistent robustness. In the
F1(F) chart, which typically represents the harder task of identi-
fying incorrect facts, RAG-based methods and their aggregations
dominate the top rankings. On the other hand, GIV-F (blue bars)
exhibits high variance. Although Mistral (GIV-F) achieves the
absolute highest peak in the F1(T) chart (0.88), other models
using the same strategy, such as gpt-4o-mini, perform drastically
lower at 0.40. This result falls significantly below the random
guessing baseline and suggests that while GIV-F can prompt high
recall for true facts in specific models, it lacks the stability of
RAG. The DKA (red bars) methodology generally occupies the
middle-to-lower tier, particularly in the F1(F) analysis, which
indicates that reliance on internal parametric knowledge alone is
often insufficient for distinguishing false claims. Finally, the ag-
gregation methods denoted as “agg-cons-+” consistently appear
in the upper echelons of both charts. This confirms that ensem-
ble reasoning, specifically majority voting strategies, effectively
mitigates the volatility of individual models and smoothes out
the noise observed in strategies like GIV-Z and GIV-F.

Finding 5: RAG offers the strongest cross-dataset generaliza-
tion, consistently outperforming internal knowledge methods in
detecting false claims. Some GIV-F models reach top performance
on True facts but are highly volatile. Notably, several internal
knowledge methods perform below Random Guessing, show-
ing that poor methodology can degrade reasoning to below a
coin-flip baseline. Thus, consensus-based aggregation remains
essential for stability and reducing model-specific bias.

7 Qualitative Error Analysis

For our error analysis, we categorize mistakes from open-source
models using a semi-automated pipeline combining LLM-generated
reasoning with contextual document embeddings. We collect
logs of incorrect predictions and prompt the same LLM to ex-
plain each error. Then, we encode these explanations using the
cde-small-v1 model [39] and cluster them using UMAP for
dimensionality reduction followed by HDBSCAN [6] to find clus-
ters of varying densities. Finally, we assign descriptive labels to
each cluster. The resulting error categories are: Unlabeled (E1):
The supplied context is missing the asserted details or mentions of
the relevant entities. Relationship Errors (E2): The model provides
incorrect information about relationships between individuals,
such as marital status or religious affiliation. Role Attribution
Errors (E3): The model wrongly links people to particular roles,
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locations, or teams. Geographic/Nationality Errors (E4): Informa-
tion about places or national affiliations is inconsistent with the
context. Genre/Classification Errors (E5): The model miscatego-
rizes movies, genres, or creative works connected to individuals
or studios. Identifier/Biographical Errors (E6): Identifiers or bio-
graphical fact, such as award names, are inaccurate.

Table 9: Dataset-wise error clustering based on LLM-
generated reasoning,.

Dataset Model E1 E2 E3 E4 E5 E6 Total
Gemmaz | 4 36 45 176 13 1 275
Qwen25 | 33 27 60 194 34 1 349
FactBench [\ a31 | 38 44 73 205 38 3 491
Mistral | 53 27 53 242 40 2 417
Unique. Ratio (%) | 0.62 072 044 052 063 057 || 053
Gemmaz | 6 134 0 14 51 2 207
Owen25 | 7 109 0 13 63 2 194
YAGO Llama3.1 | 8 98 0 19 104 2 231
Mistral 7 54 0 10 34 3 108
Unique. Ratio (%) | 035 052 - 046 051 033 | 050
Gemmaz | 353 22 98 1729 459 299 || 2960
Owen25 | 339 19 91 1525 357 237 || 2568
DBpedia  Llama3.1 | 382 28 109 2172 509 318 | 3518
Mistral | 325 20 94 1487 438 241 || 2605
Unique. Ratio (%) 041 043 044 042 042 0.40 0.41

Table 9 shows the count of each error type on the evaluated
datasets. As shown in Table 9, E4 errors form the predominant
challenge in FactCheck. In addition, we extended this analysis on
the DBpedia dataset using the stratification and topic modeling
from Marchesin et al. [38] to understand the impact of fact pop-
ularity and domain. The results reveal that error rates decrease
in partitions representing common knowledge and domains like
“Education” and “News” yield lower error rates, while “Architec-
ture” and “Transportation” remain more challenging. The entire
verification process and the error analysis presented here can
be interactively interpreted and visualized using our web-based
platform available at https://factcheck.dei.unipd.it/ [55].

To study how the models complement each other, we examined
overlaps in their predictions using UpSet plots [35]. As illustrated
in Figure 4, the largest intersection generally corresponds to
facts correctly predicted by all four models, indicating that open-
source LLMs share much of their internal knowledge as well as
their error profiles. This agreement is most pronounced in the
RAG setting, where common external evidence steers the models
toward the same conclusions, thereby reducing variance.

GIV-Z, however, departs from this pattern: the “all-model” in-
tersection shrinks markedly relative to DKA (from roughly 4,600
to about 3,200) and is replaced by stronger pairwise overlaps
(e.g., between Qwen2.5 and Gemma2). This pattern suggests that
zero-shot prompting leads to more heterogeneous reasoning tra-
jectories and greater disagreement among models. In contrast,
GIV-F restores stronger consensus, raising the all-model inter-
section to over 5,200, indicating that few-shot demonstrations
effectively harmonize model behavior. Overall, the limited true
complementarity among models may explain why consensus
methods stabilize predictions but rarely outperform the best sin-
gle model.

8 Final Remarks

In this work, we introduced FactCheck, a benchmark for system-
atically evaluating LLMs in KG fact validation. Our evaluations
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on three real-world datasets included in FactCheck- FactBench,
YAGO, and DBpedia - yielded several key findings. First, open-
source LLMs, such as Gemmaz2, achieve promising verification
performance, with F1 scores up to 0.79 and 0.76 using internal
knowledge alone and exceeding 0.89 when augmented with RAG.
Second, RAG improves performance across most settings, though
at a significant computational cost — being roughly 10x slower
than other methods. Third, multi-model consensus mitigates
errors and provides more reliable responses than single-model
predictions, in particular when relying on internal knowledge.

At the same time, we also identified several limitations: (1)
dataset-specific challenges, such as class imbalance in YAGO and
schema diversity in DBpedia; (2) infrastructure constraints, in-
cluding a 0.08% retrieval failure rate due to network issues and
regional restrictions; and (3) content filtering in hosted deploy-
ments, such as blocked factual content on sensitive topics for
Azure’s GPT-40-mini.

Hence, FactCheck advances the study of LLMs factual reason-
ing by leveraging the structured semantics of KGs, unlike prior
benchmarks focused on unstructured claims or general-domain
QA. Tt provides a controlled environment for reproducible, fine-
grained analyses of model behavior, including internal knowl-
edge use, retrieval effectiveness, and multi-model interactions.
As arobust testbed, FactCheck supports the development of new
prompting strategies, model architectures, and retrieval tech-
niques for fact validation. By releasing it publicly, we aim to

promote transparency, collaboration, and faster progress toward
trustworthy, scalable KG validation systems.

Looking ahead, our findings suggest several promising re-
search directions. First, fine-tuning or pretraining LLMs for KG
fact validation could help mitigate limitations from imbalanced
datasets. Second, hybrid retrieval strategies that combine struc-
tured KG traversal with unstructured web data may enhance
retrieval quality, particularly for datasets like DBpedia. Finally,
the benchmark can be extended to support the evaluation of fact-
verification systems that also leverage logical rules in the KG, for
example by exploiting the ontologies on which the KG is based
(e.g., using transitivity, domain/range constraints, and other prop-
erties to assess the correctness and reliability of triples).
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