
Dynamic programming in faulty memory hierarchies
(cache-obliviously)

S. Caminiti1, I. Finocchi1, E. G. Fusco1, and F. Silvestri2

1Computer Science Department, Sapienza University of Rome

2Department of Information Engineering, University of Padova,

FSTTCS @ Mumbai

December 14, 2011

The origins

Computing with unreliable information/faulty components dates back to
the 50s

Von Numann,Probabilistic Logics and the
Synthesis of Reliable Organisms from Unreliable

Components, 1956

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 2 / 37

Which components?

Processors

Network nodes/links

Memories

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 3 / 37

Faulty memories

Memories

Memory fault

One or more bits read differently from how they were last written

Due to:

transient electronic noises (electrical or magnetic interference: e.g.,
cosmic rays)

hardware problems: e.g., permanently damaged bit

corruption in data path between memories and processing units

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 4 / 37

Impact of memory faults

Machine crashes

Security vulnerabilities

Breaking cryptographic protocols
[Blömer and Seifert, 2003]

Taking control over Java Virtual
Machine
[Govindavajhala and Appel, 2003]

Breaking smart cards
[Skorobogatov and Anderson, 2003]

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 5 / 37

Impact of memory faults: unpredictable output

Unpredictable output: an example...

MERGE (〈1, 2, 3〉, 〈4, 5, 6〉)
⇓

MERGE (〈���
17

1, 2, 3〉, 〈4, 5, 6〉)
⇓

〈4, 5, 6, 17, 2, 3〉

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 6 / 37

How common are memory faults?

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 7 / 37

A field study

In a field study by Google researchers [Schroeder et al., 2011]

Observed mean fault rates much higher than in laboratory conditions
25,000-70,000 faults per billion device hours per Mb
> 8% of DIMMs affected by faults per year

Small cluster of computers with few GB per node

one fault every few minutes

As memory size becomes larger, mean time between failures decreases

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 8 / 37

How to fight corruption?

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 9 / 37

Hardware vs software solutions

Hardware solution: error correcting codes (ECC)

$$$$$: large manufacturing and power costs
not always available
do not guarantee complete fault coverage: number of bit faults may
exceed ECC limit

Software solution: robustification

Redesign algorithms
Rewrite software
When faults occur: possibly longer execution, but space/time penalties
not too large

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 10 / 37

Some models of faulty memories

Liar model [Ulam, 1977, Rényi, 1994, Pelc, 2002]

two person game: how many comparison questions to find a number in
[1, 100] if the adversary can lie once or twice?
faults on operations, not on data

Sorting networks [Yao and Yao, 1985, Leighton and Ma, 1999]

Some comparison nodes may be faulty

Fault-tolerant pointer-based data structures
[Aumann and Bender, 1996]

Losing a single pointer can make an entire data structure unreachable

Checking model [Blum et al., 1991]

Can we design (on/off-line) checkers to report buggy behavior of data
structures using only a small (logarithmic) amount of reliable memory?

Error-correcting data structures [de Wolf, 2009]

Exploit ECCs to obtain space-time trade-offs

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 11 / 37

The faulty RAM

The Faulty RAM Model
[Finocchi and Italiano, 2008]

Memory fault: the correct value stored in a memory location is
altered (destructive faults)

Adversary with unbounded computational power: can corrupt up to δ
words

Fault appearance


at any time
at any memory location
simultaneously

Corrupted values indistinguishable from correct ones

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 12 / 37

The faulty RAM (2)

O (1) words of safe memory

cannot be corrupted by the adversary
can be read by the adversary

O (1) words of private memory

cannot be corrupted by the adversary
cannot be read by the adversary
useful for storing random bits

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 13 / 37

Some results in literature

Sorting (mergesort & quicksort)

Selection

Priority queues

Searching (binary search &
dictionaries)

Local dependency dynamic
programming

Counting

K-d trees

Interval trees

Suffix trees

. . .

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 14 / 37

I/O-efficiency

Faulty RAM has one memory level

Modern platforms feature memory
hierarchies

Reducing I/O improves performance ⇒
exploit locality

Caches (SRAM) even more sensitive to
memory faults

Low supply voltage, low critical charge per
cell
ECC prohibitive: tight constraints on die
size and speed

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 15 / 37

Fault tolerance vs I/O-efficiency

Hierarchical faulty memory model
[Brodal et al., 2009]

Two memory levels (memory and cache)

Cache size M, block length B

Both levels can be faulty

I/O resilient algorithms for: sorting, dictionary,
priority queue

Algorithms are cache-aware: crucially depend on memory parameters
⇓

reduced portability

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 16 / 37

Cache-obliviousness

Cache-oblivious algorithms overcome the issue [Frigo et al., 1999]

no explicit dependency on memory parameters
adapt automatically to all memory levels
optimality on a two-level hierarchy implies optimality on an arbitrary
hierarchy

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 17 / 37

Fault tolerance vs cache-oblivious

Question

Can we design algorithms that are fault-tolerant and cache-oblivious?

Cache-oblivious algorithms are designed in a flat model (faulty-RAM),
but executed on the hierarchical faulty memory model

P private memory

if P = Θ (1): private memory may be implemented in the CPU registers
if P = ω (1): private memory hierarchy whose largest level has size P
Misses due to private memory are negligible in our algorithms.

Cache-oblivious algorithms don’t use M and B, but may use δ and P

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 18 / 37

Our results

Result 1

Provide an optimal resilient cache-oblivious algorithm for local dependency
dynamic programming

Previous result wasn’t nor cache-oblivious nor cache-efficient
[Caminiti et al., 2010]

Trade-off: private memory P vs performance

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 19 / 37

Our results

Result 2

Extend the class of problems that can be solved resiliently via dynamic
programming

Provide an optimal resilient cache-oblivious algorithm for the
Gaussian Elimination Paradigm (GEP)

GEP solves non-local dependency dynamic programming problems:

all-pairs shortest paths, matrix multiplications, Gaussian elimination
without pivoting,. . .

No previous resilient algorithms

Trade-off: private memory P vs performance

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 20 / 37

Our results

Result 3

Provide an optimal resilient cache-oblivious algorithm for the Fast Fourier
Transform

No previous resilient algorithms

O (log log n) private memory (no trade-off)

Remark:

All algorithms are correct w.h.p.

Proposed techniques may be used for translating other recursive
algorithms into resilient algorithms

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 21 / 37

The rest of the talk. . .

We focus on a case of local dependency dynamic programming

Case study

Computing the edit distance (ED) of two strings:

We provide a resilient cache-oblivious algorithm for ED using
O (log n) private memory

Then we show how to extend the algorithm to use P private memory

Similar techniques for GEP and FFT

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 22 / 37

First, some notation. . .

r -resilient variable x

Write 2r + 1 copies
Read by majority (in O (1) safe memory)
At least r + 1 faults are required to corrupt x
An adversary can corrupt at most bδ/(r + 1)c r -resilient variables

Rabin fingerprint ψA of a vector A = 〈a0, a1, . . . , an−1〉

ψA =
n−1∑
i=0

ai2
w(n−i−1) mod p

p prime number, w memory word size
Can be computed with a scan of A and O (1) space
If entries are not accessed in order, fingerprint may require O (n log n)
due to exponentiation

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 23 / 37

Running example: ED

Edit distance

Input: strings X = x1, . . . xn, Y = y1, . . . yn.

Output: their edit distance

Edit − Distance(X ,Y) = number of edit ops {ins, del, sub} required to
transform X into Y

DP table for ED: (n + 1)× (n + 1) table, given by the following
recurrence:

`[i , j] =


i + j if i = 0 or j = 0
`[i − 1, j − 1] if i , j > 0 and xi = yj
1 + min{`[i , j − 1], `[i − 1, j]} if i , j > 0 and xi 6= yj

The ED is `[n, n]

O
(
n2
)

running time

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 24 / 37

A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]

Input: Strings X and Y ; boundaries T and L

Output: boundaries R and D

Decomposes the table into 4 subtables

Recursively computes the output
boundaries of each subtable

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 25 / 37

A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]

Input: Strings X and Y ; boundaries T and L

Output: boundaries R and D

Decomposes the table into 4 subtables

Recursively computes the output
boundaries of each subtable

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 25 / 37

A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]

Input: Strings X and Y ; boundaries T and L

Output: boundaries R and D

Decomposes the table into 4 subtables

Recursively computes the output
boundaries of each subtable

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 25 / 37

A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]

Input: Strings X and Y ; boundaries T and L

Output: boundaries R and D

Decomposes the table into 4 subtables

Recursively computes the output
boundaries of each subtable

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 25 / 37

A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]

Input: Strings X and Y ; boundaries T and L

Output: boundaries R and D

Decomposes the table into 4 subtables

Recursively computes the output
boundaries of each subtable

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 25 / 37

Some ideas

A bad idea

All variables are δ-resiliently

O
(
δn2
)

time

O
(
δ n2

BM

)
misses

Match lower bounds when δ = O (1)

A good idea

Use dδ/2ie-resilient variables at recursive level i

The adversary can corrupt at most 2i subproblems at level i

Each input at level-i is associated with a fingerprint computed with
correct values using prime pi (write fingerprint).

The algorithm can recognize faults on inputs w.h.p.

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 26 / 37

The resilient algorithm

The algorithm at recursive level i

Input: strings X and Y , boundaries L and
T , the respective write fingerprints in private
memory.
Output: boundaries R and D and the
respective write fingerprints. null if faults
are found.

Note: Inputs and outputs are dδ/2ie-resilient
and fingerprints are computed with prime pi . Private memory (input):

ΨX ,ΨY ,ΨT ,ΨL

Private memory (output):
ΨR ,ΨD

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 27 / 37

The resilient algorithm (2)

Algorithm:

1 Compute the 4 subproblems recursively
2 For each subproblem:

1 Extracts inputs as dδ/2i+1e-resilient
variables

2 Create write fingerprints of
subproblem inputs with prime pi+1

3 While creating the new fingerprints
check correctness using the old ones

3 If a fault is detected return null

4 If a subproblem return null change
prime pi+1 and restart subproblem

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 28 / 37

Fingerprint mismatches

Input: vector X (dδ/2ie-resilient) and Ψ(X) (computed with prime pi)

1 At the same time computes

fingerprint Ψ(X ′) of X ′ using pi+1

fingerprint Ψ̃(X ′) of X ′ using pi

X

X' {
 Ψ(X ') Ψ(X ')

~

2 Compute fingerprint Ψ̃(X) of X using pi starting from Ψ̃(X ′)

X

X' {
 Ψ(X) Ψ(X ')

~ ~

3 If Ψ̃(X) 6= Ψ(X), at least dδ/2ie+ 1 faults occur, then return null

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 29 / 37

Analysis

Successful recursive calls:

No fingerprint mismatch
T (n, δ) = 4T (n/2, δ/2) + Θ (n(δ + 1)) = O

(
n2 + δn log n

)

Unsuccessful calls (α ≤ δ actual number of faults):

Fingerprint mismatch at level i
at least δ/2i values corrupted
at most α2i/δ recomputations at level i

log δ∑
i=1

α2i

δ

T (n, δ)

4i
≤ T (n, δ)

log δ∑
i=1

1

2i
≤ T (n, δ)

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 30 / 37

Bounds for LD-DP

Bounds

Running time: O
(
n2 + δn log n

)
Match O

(
n2
)
: δ = O (n/ log n)

Cache misses: O
(
n2/(MB) + δn log n/B

)
Lower bound: Ω

 n2/(MB)︸ ︷︷ ︸
non-resilient bound

+ δn/B︸ ︷︷ ︸
resilient bound


Previous result: O (nm/B) misses even without faults

The algorithm is cache-oblivious

Requires private memory Θ (log n)

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 31 / 37

Trading time for private memory

P private memory words

λ× λ matrix decomposition:

λ = Θ
(
n1/P

)
, logλ n = Θ (P)

Resiliency decreases by a factor of λ at
each call

Subproblems solved in Z-order (same as
recursive, good temporal locality)

Row and column outputs of each
subproblem are stored in two vectors, R
and C

B

R

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 32 / 37

Trading time for private memory

Ω (1) subproblems: cannot check
correctness of input and output
boundaries before each recursive call

Fingerprints aggregate boundaries of all
λ× λ subproblems

Lazy fault detection

B

R

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 33 / 37

Data access pattern vs. fingerprints

Read/write data access patterns are different. . . but regular!

“Out-of-order“ fingerprints: compute
write fingerprints according to read
pattern

Be careful: need to maintain O (1)
amortized update time (involves
exponentiations)

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 34 / 37

Time – private memory trade-offs

Bounds

Running time: O
(
n2 + δn1+c/PP

)
Cache misses: O

(
n2/(MB) + δn1+c/PP/B

)
Private memory P from O (1) to Θ (log n)

nc/P = O (1) when P = Θ (log n)

Similar trade-offs for GEP

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 35 / 37

Conclusion

Future research:

1 Can we reduce private memory without affecting performance?

2 Exploiting redundancy vs ECC like in [Christiano et al., 2011]

3 δ-obliviousness

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 36 / 37

Thank you!

Questions?

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 37 / 37

Aumann, Y. and Bender, M. (1996).

Fault tolerant data structures.

In Proc. of 37th FOCS, pages 580 –589.

Blömer, J. and Seifert, J.-P. (2003).

Fault Based Cryptanalysis of the Advanced Encryption Standard (AES) Financial
Cryptography.

In Financial Cryptography, volume 2742 of LNCS, chapter 12, pages 162–181.
Springer Berlin / Heidelberg.

Blum, M., Evans, W., Gemmell, P., Kannan, S., and Naor, M. (1991).

Checking the correctness of memories.

In Proc. 32nd FOCS, pages 90–99.

Brodal, G. S., Jørgensen, A. G., and Mølhave, T. (2009).

Fault tolerant external memory algorithms.

In Proc. 11th WADS, volume 5664 of LNCS, pages 411–422.

Caminiti, S., Finocchi, I., and Fusco, E. G. (2010).

Local dependency dynamic programming in the presence of memory faults.

In Proc. 28th STACS.

Chowdhury, R. A. and Ramachandran, V. (2007).
F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 37 / 37

The cache-oblivious gaussian elimination paradigm: theoretical framework,
parallelization and experimental evaluation.

In Proc. 19th SPAA, pages 71–80.

Christiano, P., Demaine, E. D., and Kishore, S. (2011).

Lossless fault-tolerant data structures with additive overhead.

In Proc. 12th WADS, pages 243–254.

de Wolf, R. (2009).

Error-correcting data structures.

In STACS, pages 313–324.

Finocchi, I. and Italiano, G. (2008).

Sorting and searching in faulty memories.

Algorithmica, 52:309–332.

Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S. (1999).

Cache-oblivious algorithms.

In Proc. 40th FOCS, pages 285–298.

Govindavajhala, S. and Appel, A. W. (2003).

Using memory errors to attack a virtual machine.

In Proc. of Symp. Security and Privacy, pages 154–165. IEEE.
F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 37 / 37

Leighton, T. and Ma, Y. (1999).

Tight bounds on the size of fault-tolerant merging and sorting networks with
destructive faults.

SIAM Journal on Computing, 29(1):258–273.

Pelc, A. (2002).

Searching games with errors—fifty years of coping with liars.

Theoretical Computer Science, 270(1-2):71–109.

Rényi, A. (1994).

A Diary on Information Theory.

John Wiley & Sons.

Schroeder, B., Pinheiro, E., and Weber, W. D. (2011).

DRAM errors in the wild: a large-scale field study.

Commun. ACM, 54:100–107.

Skorobogatov, S. and Anderson, R. (2003).

Optical Fault Induction Attacks Cryptographic Hardware and Embedded Systems.

In Proc. of CHES, volume 2523 of LNCS, chapter 2, pages 31–48. Springer Berlin /
Heidelberg.

Ulam, S. (1977).
F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 37 / 37

Adventures of a mathematician.

Scribners.

Yao, A. C. and Yao, F. F. (1985).

On fault-tolerant networks for sorting.

SIAM Journal on Computing, 14(1):120–128.

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 37 / 37

	Introduction
	Memory faults
	Overview of the most important models
	Our results
	Case study: edit distance
	Conclusion

