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The origins

Computing with unreliable information/faulty components dates back to
the 50s

Von Numann,Probabilistic Logics and the
Synthesis of Reliable Organisms from Unreliable

Components, 1956
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Which components?

Processors

Network nodes/links

Memories
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Faulty memories

Memories

Memory fault

One or more bits read differently from how they were last written

Due to:

transient electronic noises (electrical or magnetic interference: e.g.,
cosmic rays)

hardware problems: e.g., permanently damaged bit

corruption in data path between memories and processing units
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Impact of memory faults

Machine crashes

Security vulnerabilities

Breaking cryptographic protocols
[Blömer and Seifert, 2003]

Taking control over Java Virtual
Machine
[Govindavajhala and Appel, 2003]

Breaking smart cards
[Skorobogatov and Anderson, 2003]
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Impact of memory faults: unpredictable output

Unpredictable output: an example...

MERGE (〈1, 2, 3〉, 〈4, 5, 6〉)
⇓

MERGE (〈���
17

1, 2, 3〉, 〈4, 5, 6〉)
⇓

〈4, 5, 6, 17, 2, 3〉
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How common are memory faults?
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A field study

In a field study by Google researchers [Schroeder et al., 2011]

Observed mean fault rates much higher than in laboratory conditions
25,000-70,000 faults per billion device hours per Mb
> 8% of DIMMs affected by faults per year

Small cluster of computers with few GB per node

one fault every few minutes

As memory size becomes larger, mean time between failures decreases
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How to fight corruption?
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Hardware vs software solutions

Hardware solution: error correcting codes (ECC)

$$$$$: large manufacturing and power costs
not always available
do not guarantee complete fault coverage: number of bit faults may
exceed ECC limit

Software solution: robustification

Redesign algorithms
Rewrite software
When faults occur: possibly longer execution, but space/time penalties
not too large
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Some models of faulty memories

Liar model [Ulam, 1977, Rényi, 1994, Pelc, 2002]

two person game: how many comparison questions to find a number in
[1, 100] if the adversary can lie once or twice?
faults on operations, not on data

Sorting networks [Yao and Yao, 1985, Leighton and Ma, 1999]

Some comparison nodes may be faulty

Fault-tolerant pointer-based data structures
[Aumann and Bender, 1996]

Losing a single pointer can make an entire data structure unreachable

Checking model [Blum et al., 1991]

Can we design (on/off-line) checkers to report buggy behavior of data
structures using only a small (logarithmic) amount of reliable memory?

Error-correcting data structures [de Wolf, 2009]

Exploit ECCs to obtain space-time trade-offs
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The faulty RAM

The Faulty RAM Model
[Finocchi and Italiano, 2008]

Memory fault: the correct value stored in a memory location is
altered (destructive faults)

Adversary with unbounded computational power: can corrupt up to δ
words

Fault appearance


at any time
at any memory location
simultaneously

Corrupted values indistinguishable from correct ones
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The faulty RAM (2)

O (1) words of safe memory

cannot be corrupted by the adversary
can be read by the adversary

O (1) words of private memory

cannot be corrupted by the adversary
cannot be read by the adversary
useful for storing random bits
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Some results in literature

Sorting (mergesort & quicksort)

Selection

Priority queues

Searching (binary search &
dictionaries)

Local dependency dynamic
programming

Counting

K-d trees

Interval trees

Suffix trees

. . .
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I/O-efficiency

Faulty RAM has one memory level

Modern platforms feature memory
hierarchies

Reducing I/O improves performance ⇒
exploit locality

Caches (SRAM) even more sensitive to
memory faults

Low supply voltage, low critical charge per
cell
ECC prohibitive: tight constraints on die
size and speed
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Fault tolerance vs I/O-efficiency

Hierarchical faulty memory model
[Brodal et al., 2009]

Two memory levels (memory and cache)

Cache size M, block length B

Both levels can be faulty

I/O resilient algorithms for: sorting, dictionary,
priority queue

Algorithms are cache-aware: crucially depend on memory parameters
⇓

reduced portability

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 16 / 37



Cache-obliviousness

Cache-oblivious algorithms overcome the issue [Frigo et al., 1999]

no explicit dependency on memory parameters
adapt automatically to all memory levels
optimality on a two-level hierarchy implies optimality on an arbitrary
hierarchy
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Fault tolerance vs cache-oblivious

Question

Can we design algorithms that are fault-tolerant and cache-oblivious?

Cache-oblivious algorithms are designed in a flat model (faulty-RAM),
but executed on the hierarchical faulty memory model

P private memory

if P = Θ (1): private memory may be implemented in the CPU registers
if P = ω (1): private memory hierarchy whose largest level has size P
Misses due to private memory are negligible in our algorithms.

Cache-oblivious algorithms don’t use M and B, but may use δ and P
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Our results

Result 1

Provide an optimal resilient cache-oblivious algorithm for local dependency
dynamic programming

Previous result wasn’t nor cache-oblivious nor cache-efficient
[Caminiti et al., 2010]

Trade-off: private memory P vs performance
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Our results

Result 2

Extend the class of problems that can be solved resiliently via dynamic
programming

Provide an optimal resilient cache-oblivious algorithm for the
Gaussian Elimination Paradigm (GEP)

GEP solves non-local dependency dynamic programming problems:

all-pairs shortest paths, matrix multiplications, Gaussian elimination
without pivoting,. . .

No previous resilient algorithms

Trade-off: private memory P vs performance
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Our results

Result 3

Provide an optimal resilient cache-oblivious algorithm for the Fast Fourier
Transform

No previous resilient algorithms

O (log log n) private memory (no trade-off)

Remark:

All algorithms are correct w.h.p.

Proposed techniques may be used for translating other recursive
algorithms into resilient algorithms
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The rest of the talk. . .

We focus on a case of local dependency dynamic programming

Case study

Computing the edit distance (ED) of two strings:

We provide a resilient cache-oblivious algorithm for ED using
O (log n) private memory

Then we show how to extend the algorithm to use P private memory

Similar techniques for GEP and FFT
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First, some notation. . .

r -resilient variable x

Write 2r + 1 copies
Read by majority (in O (1) safe memory)
At least r + 1 faults are required to corrupt x
An adversary can corrupt at most bδ/(r + 1)c r -resilient variables

Rabin fingerprint ψA of a vector A = 〈a0, a1, . . . , an−1〉

ψA =
n−1∑
i=0

ai2
w(n−i−1) mod p

p prime number, w memory word size
Can be computed with a scan of A and O (1) space
If entries are not accessed in order, fingerprint may require O (n log n)
due to exponentiation
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Running example: ED

Edit distance

Input: strings X = x1, . . . xn, Y = y1, . . . yn.

Output: their edit distance

Edit − Distance(X ,Y ) = number of edit ops {ins, del, sub} required to
transform X into Y

DP table for ED: (n + 1)× (n + 1) table, given by the following
recurrence:

`[i , j ] =


i + j if i = 0 or j = 0
`[i − 1, j − 1] if i , j > 0 and xi = yj
1 + min{`[i , j − 1], `[i − 1, j ]} if i , j > 0 and xi 6= yj

The ED is `[n, n]

O
(
n2
)

running time
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A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]

Input: Strings X and Y ; boundaries T and L

Output: boundaries R and D

Decomposes the table into 4 subtables

Recursively computes the output
boundaries of each subtable
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Some ideas

A bad idea

All variables are δ-resiliently

O
(
δn2
)

time

O
(
δ n2

BM

)
misses

Match lower bounds when δ = O (1)

A good idea

Use dδ/2ie-resilient variables at recursive level i

The adversary can corrupt at most 2i subproblems at level i

Each input at level-i is associated with a fingerprint computed with
correct values using prime pi (write fingerprint).

The algorithm can recognize faults on inputs w.h.p.
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The resilient algorithm

The algorithm at recursive level i

Input: strings X and Y , boundaries L and
T , the respective write fingerprints in private
memory.
Output: boundaries R and D and the
respective write fingerprints. null if faults
are found.

Note: Inputs and outputs are dδ/2ie-resilient
and fingerprints are computed with prime pi . Private memory (input):

ΨX ,ΨY ,ΨT ,ΨL

Private memory (output):
ΨR ,ΨD
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The resilient algorithm (2)

Algorithm:

1 Compute the 4 subproblems recursively
2 For each subproblem:

1 Extracts inputs as dδ/2i+1e-resilient
variables

2 Create write fingerprints of
subproblem inputs with prime pi+1

3 While creating the new fingerprints
check correctness using the old ones

3 If a fault is detected return null

4 If a subproblem return null change
prime pi+1 and restart subproblem
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Fingerprint mismatches

Input: vector X (dδ/2ie-resilient) and Ψ(X ) (computed with prime pi )

1 At the same time computes

fingerprint Ψ(X ′) of X ′ using pi+1

fingerprint Ψ̃(X ′) of X ′ using pi

X

X' {
 Ψ(X ')  Ψ(X ')

~

2 Compute fingerprint Ψ̃(X ) of X using pi starting from Ψ̃(X ′)

X

X' {
 Ψ(X ) Ψ(X ')

~ ~

3 If Ψ̃(X ) 6= Ψ(X ), at least dδ/2ie+ 1 faults occur, then return null
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Analysis

Successful recursive calls:

No fingerprint mismatch
T (n, δ) = 4T (n/2, δ/2) + Θ (n(δ + 1)) = O

(
n2 + δn log n

)

Unsuccessful calls (α ≤ δ actual number of faults):

Fingerprint mismatch at level i
at least δ/2i values corrupted
at most α2i/δ recomputations at level i

log δ∑
i=1

α2i

δ

T (n, δ)

4i
≤ T (n, δ)

log δ∑
i=1

1

2i
≤ T (n, δ)
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Bounds for LD-DP

Bounds

Running time: O
(
n2 + δn log n

)
Match O

(
n2
)
: δ = O (n/ log n)

Cache misses: O
(
n2/(MB) + δn log n/B

)
Lower bound: Ω

 n2/(MB)︸ ︷︷ ︸
non-resilient bound

+ δn/B︸ ︷︷ ︸
resilient bound


Previous result: O (nm/B) misses even without faults

The algorithm is cache-oblivious

Requires private memory Θ (log n)
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Trading time for private memory

P private memory words

λ× λ matrix decomposition:

λ = Θ
(
n1/P

)
, logλ n = Θ (P)

Resiliency decreases by a factor of λ at
each call

Subproblems solved in Z-order (same as
recursive, good temporal locality)

Row and column outputs of each
subproblem are stored in two vectors, R
and C

B

R
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Trading time for private memory

Ω (1) subproblems: cannot check
correctness of input and output
boundaries before each recursive call

Fingerprints aggregate boundaries of all
λ× λ subproblems

Lazy fault detection

B

R
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Data access pattern vs. fingerprints

Read/write data access patterns are different. . . but regular!

“Out-of-order“ fingerprints: compute
write fingerprints according to read
pattern

Be careful: need to maintain O (1)
amortized update time (involves
exponentiations)
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Time – private memory trade-offs

Bounds

Running time: O
(
n2 + δn1+c/PP

)
Cache misses: O

(
n2/(MB) + δn1+c/PP/B

)
Private memory P from O (1) to Θ (log n)

nc/P = O (1) when P = Θ (log n)

Similar trade-offs for GEP
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Conclusion

Future research:

1 Can we reduce private memory without affecting performance?

2 Exploiting redundancy vs ECC like in [Christiano et al., 2011]

3 δ-obliviousness
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Thank you!

Questions?
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