Dynamic programming in faulty memory hierarchies

(cache-obliviously)

S. Caminitil, I. Finocchil, E. G. Fusco!, and F. Silvestri?

LComputer Science Department, Sapienza University of Rome

2Department of Information Engineering, University of Padova,

FSTTCS @ Mumbai
December 14, 2011

UNIVERSITA
DEGLI STUDI
DI PADOVA

SAPIENZA

UNIVERSITA DI ROMA

The origins

Computing with unreliable information /faulty components dates back to
the 50s

Von Numann, Probabilistic Logics and the

Synthesis of Reliable Organisms from Unreliable
Components, 1956

LOLLOUL) GpGi v &avim swemen e

The subject-matter, as the title suggests, is the role of error
in logics, or in the physical implementation of logics — in sutomata-
synthesis. Error is viewed, therefore, not as an extraneous and misdirected

or misdirecting accident, but as an essential part of the process under con-
Ssideration — its importance in the synthesis of automate belng rully com-
parable to that of the factor which 1s normally considered, the intended and
correct logical structure. -

h B b anA aA han TH

F. Silvestri (UniPD)

FSTTCS 2011 - Mumbai 2/37

/

Which components?

@ Processors
@ Network nodes/links

@ Memories

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 3/37

Faulty memories

Memories

One or more bits read differently from how they were last written

Due to:

e transient electronic noises (electrical or magnetic interference: e.g.,
cosmic rays)

@ hardware problems: e.g., permanently damaged bit

@ corruption in data path between memories and processing units

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 4 /37

Impact of memory faults

@ Machine crashes

@ Security vulnerabilities

o Breaking cryptographic protocols
[Blomer and Seifert, 2003]

e Taking control over Java Virtual
Machine
[Govindavajhala and Appel, 2003]

e

o Breaking smart cards
[Skorobogatov and Anderson, 2003]

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 5/37

Impact of memory faults: unpredictable output

@ Unpredictable output: an example...

MERGE((1,2,3), (4,5,6))

I
17
MERGE((1,2,3), (4,5,6))
I
(4,5,6,17,2,3)

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 6 /37

How common are memory faults?

Google

how common are memory faults?

Google Search I'm Feeling Lucky

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 7 /37

A field study

@ In a field study by Google researchers [Schroeder et al., 2011]
o Observed mean fault rates much higher than in laboratory conditions
e 25,000-70,000 faults per billion device hours per Mb
o > 8% of DIMMs affected by faults per year

@ Small cluster of computers with few GB per node

one fault every few minutes

@ As memory size becomes larger, mean time between failures decreases

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 8 /37

How to fight corruption?

DRAM error rates: Nightmare on
DIMM street

By Robin Harris | October 4, 2009, 10:04pm POT

Non-ECC DRAM is more common
Most DIMMs don’t include ECC because it costs more. Without ECC the
system doesn’t know a memory error has occurred.

Everything is fine until the data corruption means a missed memory
reference or an incorrect value or a flipped bit in a file writing to disk. What
you see is a “file not found” or a “file not readable” message or, worse yet,
silent data corruption - or even a system crash. And nothing that says
“memory error.”

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 9 /37

Hardware vs software solutions

@ Hardware solution: error correcting codes (ECC)
o 5%$%%: large manufacturing and power costs
e not always available
e do not guarantee complete fault coverage: number of bit faults may
exceed ECC limit

@ Software solution: robustification
o Redesign algorithms
o Rewrite software

o When faults occur: possibly longer execution, but space/time penalties
not too large

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 10 / 37

Some models of faulty memories

Liar model [Ulam, 1977, Rényi, 1994, Pelc, 2002]
e two person game: how many comparison questions to find a number in
[1,100] if the adversary can lie once or twice?
e faults on operations, not on data
Sorting networks [Yao and Yao, 1985, Leighton and Ma, 1999]

e Some comparison nodes may be faulty

Fault-tolerant pointer-based data structures
[Aumann and Bender, 1996]

o Losing a single pointer can make an entire data structure unreachable
Checking model [Blum et al., 1991]

e Can we design (on/off-line) checkers to report buggy behavior of data
structures using only a small (logarithmic) amount of reliable memory?

e Error-correcting data structures [de Wolf, 2009]
o Exploit ECCs to obtain space-time trade-offs

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 11 /37

The faulty RAM

The Faulty RAM Model
[Finocchi and Italiano, 2008]

@ Memory fault: the correct value stored in a memory location is
altered (destructive faults)

@ Adversary with unbounded computational power: can corrupt up to §
words

at any time
@ Fault appearance { at any memory location
simultaneously

@ Corrupted values indistinguishable from correct ones

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 12 /37

The faulty RAM (2)

@ O(1) words of safe memory

e cannot be corrupted by the adversary
e can be read by the adversary

e O (1) words of private memory
e cannot be corrupted by the adversary
e cannot be read by the adversary
e useful for storing random bits

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai

Some results in literature

@ Sorting (mergesort & quicksort)
Counting

K-d trees

@ Selection

@ Priority queues

e Searching (binary search & Interval trees

dictionaries) Suffix trees

@ Local dependency dynamic
programming

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 14 / 37

| /O-efficiency

o Faulty RAM has one memory level

@ Modern platforms feature memory
hierarchies

@ Reducing 1/O improves performance =
exploit locality
@ Caches (SRAM) even more sensitive to
memory faults
o Low supply voltage, low critical charge per
cell
o ECC prohibitive: tight constraints on die
size and speed

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 15 / 37

Fault tolerance vs |/O-efficiency

Hierarchical faulty memory model
[Brodal et al., 2009]

RAM
@ Two memory levels (memory and cache)

@ Cache size M, block length B
M @ Both levels can be faulty

@ 1/0 resilient algorithms for: sorting, dictionary,
priority queue

Algorithms are cache-aware: crucially depend on memory parameters

4
reduced portability

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 16 / 37

Cache-obliviousness

e Cache-oblivious algorithms overcome the issue [Frigo et al., 1999]

e no explicit dependency on memory parameters

e adapt automatically to all memory levels
e optimality on a two-level hierarchy implies optimality on an arbitrary

hierarchy

FSTTCS 2011 - Mumbai 17 / 37

F. Silvestri (UniPD)

Fault tolerance vs cache-oblivious
Can we design algorithms that are fault-tolerant and cache-oblivious?

e Cache-oblivious algorithms are designed in a flat model (faulty-RAM),
but executed on the hierarchical faulty memory model
@ P private memory
o if P=0©(1): private memory may be implemented in the CPU registers

o if P =w(1): private memory hierarchy whose largest level has size P
o Misses due to private memory are negligible in our algorithms.

@ Cache-oblivious algorithms don't use M and B, but may use ¢ and P

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 18 / 37

Our results

Provide an optimal resilient cache-oblivious algorithm for local dependency
dynamic programming

@ Previous result wasn't nor cache-oblivious nor cache-efficient
[Caminiti et al., 2010]

@ Trade-off: private memory P vs performance

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 19 / 37

Our results

Extend the class of problems that can be solved resiliently via dynamic
programming

@ Provide an optimal resilient cache-oblivious algorithm for the
Gaussian Elimination Paradigm (GEP)

@ GEP solves non-local dependency dynamic programming problems:

all-pairs shortest paths, matrix multiplications, Gaussian elimination
without pivoting,. . .

@ No previous resilient algorithms

@ Trade-off: private memory P vs performance

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 20 / 37

Our results

Provide an optimal resilient cache-oblivious algorithm for the Fast Fourier
Transform

@ No previous resilient algorithms

@ O (loglog n) private memory (no trade-off)

o All algorithms are correct w.h.p.

@ Proposed techniques may be used for translating other recursive
algorithms into resilient algorithms

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 21 /37

The rest of the talk. ..

We focus on a case of local dependency dynamic programming

Computing the edit distance (ED) of two strings:

@ We provide a resilient cache-oblivious algorithm for ED using
O (log n) private memory

@ Then we show how to extend the algorithm to use P private memory

Similar techniques for GEP and FFT

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 22 /37

First, some notation. ..

@ r-resilient variable x

Write 2r + 1 copies

Read by majority (in O (1) safe memory)

At least r 4 1 faults are required to corrupt x

An adversary can corrupt at most |§/(r + 1)| r-resilient variables

@ Rabin fingerprint 14 of a vector A = (ap, a1,...,an—1)
n—1]
ha = Z 2:2"(==1) " mod p
i=0

e p prime number, w memory word size

o Can be computed with a scan of A and O (1) space

o If entries are not accessed in order, fingerprint may require O (nlog n)
due to exponentiation

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 23 /37

Running example: ED

Edit distance
@ Input: strings X =x1,... %0, Y =y1,...Vn.

@ Output: their edit distance

Edit — Distance(X,Y) = number of edit ops {ins, del, sub} required to
transform X into Y

e DP table for ED: (n+ 1) x (n+ 1) table, given by the following
recurrence:
i+J ifi=0o0r;j=0
ijl=<« fi—1,j—1] ifi,j>0and x; = y;
L+ min{{[i,j—1],¢[i — 1,j]} ifi,j>0and x; # y;
@ The ED is ¢[n, n]

e O (n2) running time

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 24 /

A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]
@ Input: Strings X and Y’; boundaries T and L
@ Output: boundaries R and D

@ Decomposes the table into 4 subtables

@ Recursively computes the output x| |zf-m—mm e p————
boundaries of each subtable

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 25 / 37

A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]
@ Input: Strings X and Y’; boundaries T and L
@ Output: boundaries R and D

@ Decomposes the table into 4 subtables

@ Recursively computes the output
boundaries of each subtable

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 25 / 37

A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]
@ Input: Strings X and Y’; boundaries T and L
@ Output: boundaries R and D

@ Decomposes the table into 4 subtables

@ Recursively computes the output
boundaries of each subtable

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 25 / 37

A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]
@ Input: Strings X and Y’; boundaries T and L
@ Output: boundaries R and D

@ Decomposes the table into 4 subtables

@ Recursively computes the output =
boundaries of each subtable

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 25 / 37

A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]
@ Input: Strings X and Y’; boundaries T and L
@ Output: boundaries R and D

@ Decomposes the table into 4 subtables

@ Recursively computes the output
boundaries of each subtable

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 25 / 37

Some ideas

A bad idea

All variables are d-resiliently
e O (5n2) time
e O <5%> misses
@ Match lower bounds when 6 = O (1)

A good idea
o Use [0/2]-resilient variables at recursive level i
@ The adversary can corrupt at most 2/ subproblems at level i

@ Each input at level-i is associated with a fingerprint computed with
correct values using prime p; (write fingerprint).

@ The algorithm can recognize faults on inputs w.h.p.

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 26 / 37

The resilient algorithm

The algorithm at recursive level i

| ¥

-

Input: strings X and Y, boundaries L and
T, the respective write fingerprints in private
memory.

Output: boundaries R and D and the x| |z
respective write fingerprints. null if faults
are found.

Note: Inputs and outputs are [§/2/]-resilient

and fingerprints are computed with prime p;. Private memory (input):
WX, \UY) WT; \UL

Private memory (output):
VR, Vp

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 27 / 37

The resilient algorithm (2)

Algorithm:

© Compute the 4 subproblems recursively
@ For each subproblem:
@ Extracts inputs as [§/2/+1]-resilient
variables
@ Create write fingerprints of
subproblem inputs with prime p;1
©® While creating the new fingerprints
check correctness using the old ones

© If a fault is detected return null

@ If a subproblem return null change
prime pj;+1 and restart subproblem

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 28 / 37

Fingerprint mismatches

Input: vector X ([§/2/]-resilient) and W(X) (computed with prime p;)

© At the same time computes
o fingerprint W(X') of X" using p;41
o fingerprint W(X’) of X’ using p;
X'

X

v WX

@ Compute fingerprint W(X) of X using p; starting from W(X’)
X

X

wx) — 900
Q If U(X) # W(X), at least [§/2'] 4 1 faults occur, then return null

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 29 / 37

@ Successful recursive calls:

o No fingerprint mismatch
o T(n,6)=4T(n/2,6/2) +© (n(6 +1)) = O (n* + dnlogn)

@ Unsuccessful calls (ov < § actual number of faults):
o Fingerprint mismatch at level /
e at least 6/2' values corrupted
e at most a2'/§ recomputations at level i

log & ; log &
a2’ T(n, o) 1
ST < T(0,0)Y 5 < T(n,0)

i=1 i=1

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 30/ 37

Bounds for LD-DP

@ Running time: O (n2 + dnlog n)
e Match O (n?): 6 = O(n/log n)
o Cache misses: O (n?/(MB) + dnlogn/B)

Lower bound: 2 n?/(MB) + 6n/B
~—— ~——

non-resilient bound resilient bound

Previous result: O (nm/B) misses even without faults

The algorithm is cache-oblivious

Requires private memory © (log n)

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 31 /37

Trading time for private memory

P private memory words

A X A matrix decomposition:
A=0(n/P), logy n = © (P)

L T
Resiliency decreases by a factor of A at
each call

Subproblems solved in Z-order (same as
recursive, good temporal locality)

Row and column outputs of each
subproblem are stored in two vectors, R
and C

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 32 /37

Trading time for private memory

@ (1) subproblems: cannot check
correctness of input and output
boundaries before each recursive call

e Fingerprints aggregate boundaries of all
A X A subproblems

Lazy fault detection

F. Silvestri (UniPD)

i

FSTTCS 2011 - Mumbai

33 /37

Data access pattern vs. fingerprints

Read/write data access patterns are different. . . but regular!

1 2 3 1
@ "Out-of-order” fingerprints: compute 5 16 27 38 4
write fingerprints according to read
pattern 9 5 10 6 11 7 12 8
o Be careful: need to maintain O (1)
amortized update time (involves S - == -
exponentiations)
13 14 15 16

FSTTCS 2011 - Mumbai 34 /37

F. Silvestri (UniPD)

Time — private memory trade-offs

@ Running time: O (n2 + 5n1+c/PP)
o Cache misses: O (n?/(MB) + én'*</PP/B)

@ Private memory P from O (1) to © (log n)
o n/P = 0 (1) when P = O (log n)
@ Similar trade-offs for GEP

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 35 /37

Conclusion

Future research:
© Can we reduce private memory without affecting performance?
@ Exploiting redundancy vs ECC like in [Christiano et al., 2011]

© J-obliviousness

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 36 / 37

Questions?

F h

‘*
AL ~—

e«

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 37 /37

[d Aumann, Y. and Bender, M. (1996).
Fault tolerant data structures.
In Proc. of 37th FOCS, pages 580 —589.

ﬁ Blémer, J. and Seifert, J.-P. (2003).
Fault Based Cryptanalysis of the Advanced Encryption Standard (AES) Financial
Cryptography.
In Financial Cryptography, volume 2742 of LNCS, chapter 12, pages 162-181.
Springer Berlin / Heidelberg.

ﬁ Blum, M., Evans, W., Gemmell, P., Kannan, S., and Naor, M. (1991).
Checking the correctness of memories.
In Proc. 32nd FOCS, pages 90-99.

[@ Brodal, G. S., Jgrgensen, A. G., and Mglhave, T. (2009).
Fault tolerant external memory algorithms.
In Proc. 11th WADS, volume 5664 of LNCS, pages 411-422.

ﬁ Caminiti, S., Finocchi, I., and Fusco, E. G. (2010).
Local dependency dynamic programming in the presence of memory faults.
In Proc. 28th STACS.

ﬁ Chowdhury, R. A. and Ramachandran, V. (2007).

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 37 /37

The cache-oblivious gaussian elimination paradigm: theoretical framework,
parallelization and experimental evaluation.

In Proc. 19th SPAA, pages 71-80.

Christiano, P., Demaine, E. D., and Kishore, S. (2011).
Lossless fault-tolerant data structures with additive overhead.
In Proc. 12th WADS, pages 243-254.

de Wolf, R. (2009).
Error-correcting data structures.
In STACS, pages 313-324.

Finocchi, I. and Italiano, G. (2008).
Sorting and searching in faulty memories.
Algorithmica, 52:309-332.

Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S. (1999).
Cache-oblivious algorithms.
In Proc. 40th FOCS, pages 285-298.

Govindavajhala, S. and Appel, A. W. (2003).
Using memory errors to attack a virtual machine.

In Proc. of Symp. Security and Privacy, pages 154-165. |IEEE.

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai

[§ Leighton, T. and Ma, Y. (1999).

Tight bounds on the size of fault-tolerant merging and sorting networks with
destructive faults.

SIAM Journal on Computing, 29(1):258-273.

@ Pelc, A. (2002).
Searching games with errors—fifty years of coping with liars.
Theoretical Computer Science, 270(1-2):71-109.

(3 Rényi, A. (1994).
A Diary on Information Theory.
John Wiley & Sons.

ﬁ Schroeder, B., Pinheiro, E., and Weber, W. D. (2011).
DRAM errors in the wild: a large-scale field study.
Commun. ACM, 54:100-107.

& Skorobogatov, S. and Anderson, R. (2003).
Optical Fault Induction Attacks Cryptographic Hardware and Embedded Systems.

In Proc. of CHES, volume 2523 of LNCS, chapter 2, pages 31-48. Springer Berlin /
Heidelberg.

@ Ulam, S. (1977).

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 37 /37

Adventures of a mathematician.
Scribners.

[3 Yao, A. C. and Yao, F. F. (1985).
On fault-tolerant networks for sorting.
SIAM Journal on Computing, 14(1):120-128.

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 37 /37

	Introduction
	Memory faults
	Overview of the most important models
	Our results
	Case study: edit distance
	Conclusion

