Dynamic programming in faulty memory hierarchies

(cache-obliviously)

S. Caminitil, I. Finocchil, E. G. Fusco!, and F. Silvestri?

LComputer Science Department, Sapienza University of Rome

2Department of Information Engineering, University of Padova,

FSTTCS @ Mumbai
December 14, 2011

UNIVERSITA
DEGLI STUDI
DI PADOVA

SAPIENZA

UNIVERSITA DI ROMA




The origins

Computing with unreliable information /faulty components dates back to
the 50s

Von Numann, Probabilistic Logics and the

Synthesis of Reliable Organisms from Unreliable
Components, 1956
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The subject-matter, as the title suggests, is the role of error
in logics, or in the physical implementation of logics — in sutomata-
synthesis. Error is viewed, therefore, not as an extraneous and misdirected

or misdirecting accident, but as an essential part of the process under con-
Ssideration — its importance in the synthesis of automate belng rully com-
parable to that of the factor which 1s normally considered, the intended and
correct logical structure. -
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Which components?

@ Processors
@ Network nodes/links

@ Memories
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Faulty memories

Memories

One or more bits read differently from how they were last written

Due to:

e transient electronic noises (electrical or magnetic interference: e.g.,
cosmic rays)

@ hardware problems: e.g., permanently damaged bit

@ corruption in data path between memories and processing units
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Impact of memory faults

@ Machine crashes

@ Security vulnerabilities

o Breaking cryptographic protocols
[Blomer and Seifert, 2003]

e Taking control over Java Virtual
Machine
[Govindavajhala and Appel, 2003]

e

o Breaking smart cards
[Skorobogatov and Anderson, 2003]
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Impact of memory faults: unpredictable output

@ Unpredictable output: an example...

MERGE((1,2,3), (4,5,6))

I
17
MERGE((1,2,3), (4,5,6))
I
(4,5,6,17,2,3)
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How common are memory faults?

Google

how common are memory faults?

Google Search I'm Feeling Lucky
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A field study

@ In a field study by Google researchers [Schroeder et al., 2011]
o Observed mean fault rates much higher than in laboratory conditions
e 25,000-70,000 faults per billion device hours per Mb
o > 8% of DIMMs affected by faults per year

@ Small cluster of computers with few GB per node

one fault every few minutes

@ As memory size becomes larger, mean time between failures decreases
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How to fight corruption?

DRAM error rates: Nightmare on
DIMM street

By Robin Harris | October 4, 2009, 10:04pm POT

Non-ECC DRAM is more common
Most DIMMs don’t include ECC because it costs more. Without ECC the
system doesn’t know a memory error has occurred.

Everything is fine until the data corruption means a missed memory
reference or an incorrect value or a flipped bit in a file writing to disk. What
you see is a “file not found” or a “file not readable” message or, worse yet,
silent data corruption - or even a system crash. And nothing that says
“memory error.”
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Hardware vs software solutions

@ Hardware solution: error correcting codes (ECC)
o $5$%$%%: large manufacturing and power costs
e not always available
e do not guarantee complete fault coverage: number of bit faults may
exceed ECC limit

@ Software solution: robustification
o Redesign algorithms
o Rewrite software

o When faults occur: possibly longer execution, but space/time penalties
not too large
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Some models of faulty memories

Liar model [Ulam, 1977, Rényi, 1994, Pelc, 2002]
e two person game: how many comparison questions to find a number in
[1,100] if the adversary can lie once or twice?
e faults on operations, not on data
Sorting networks [Yao and Yao, 1985, Leighton and Ma, 1999]

e Some comparison nodes may be faulty

Fault-tolerant pointer-based data structures
[Aumann and Bender, 1996]

o Losing a single pointer can make an entire data structure unreachable
Checking model [Blum et al., 1991]

e Can we design (on/off-line) checkers to report buggy behavior of data
structures using only a small (logarithmic) amount of reliable memory?

e Error-correcting data structures [de Wolf, 2009]
o Exploit ECCs to obtain space-time trade-offs
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The faulty RAM

The Faulty RAM Model
[Finocchi and Italiano, 2008]

@ Memory fault: the correct value stored in a memory location is
altered (destructive faults)

@ Adversary with unbounded computational power: can corrupt up to §
words

at any time
@ Fault appearance { at any memory location
simultaneously

@ Corrupted values indistinguishable from correct ones
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The faulty RAM (2)

@ O(1) words of safe memory

e cannot be corrupted by the adversary
e can be read by the adversary

e O (1) words of private memory
e cannot be corrupted by the adversary
e cannot be read by the adversary
e useful for storing random bits
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Some results in literature

@ Sorting (mergesort & quicksort)
Counting

K-d trees

@ Selection

@ Priority queues

e Searching (binary search & Interval trees

dictionaries) Suffix trees

@ Local dependency dynamic
programming
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| /O-efficiency

o Faulty RAM has one memory level

@ Modern platforms feature memory
hierarchies

@ Reducing 1/O improves performance =
exploit locality
@ Caches (SRAM) even more sensitive to
memory faults
o Low supply voltage, low critical charge per
cell
o ECC prohibitive: tight constraints on die
size and speed
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Fault tolerance vs |/O-efficiency

Hierarchical faulty memory model
[Brodal et al., 2009]

RAM
@ Two memory levels (memory and cache)

@ Cache size M, block length B
M @ Both levels can be faulty

@ 1/0 resilient algorithms for: sorting, dictionary,
priority queue

Algorithms are cache-aware: crucially depend on memory parameters

4
reduced portability
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Cache-obliviousness

e Cache-oblivious algorithms overcome the issue [Frigo et al., 1999]

e no explicit dependency on memory parameters

e adapt automatically to all memory levels
e optimality on a two-level hierarchy implies optimality on an arbitrary

hierarchy
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Fault tolerance vs cache-oblivious
Can we design algorithms that are fault-tolerant and cache-oblivious?

e Cache-oblivious algorithms are designed in a flat model (faulty-RAM),
but executed on the hierarchical faulty memory model
@ P private memory
o if P=0©(1): private memory may be implemented in the CPU registers

o if P =w(1): private memory hierarchy whose largest level has size P
o Misses due to private memory are negligible in our algorithms.

@ Cache-oblivious algorithms don't use M and B, but may use ¢ and P
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Our results

Provide an optimal resilient cache-oblivious algorithm for local dependency
dynamic programming

@ Previous result wasn't nor cache-oblivious nor cache-efficient
[Caminiti et al., 2010]

@ Trade-off: private memory P vs performance
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Our results

Extend the class of problems that can be solved resiliently via dynamic
programming

@ Provide an optimal resilient cache-oblivious algorithm for the
Gaussian Elimination Paradigm (GEP)

@ GEP solves non-local dependency dynamic programming problems:

all-pairs shortest paths, matrix multiplications, Gaussian elimination
without pivoting,. . .

@ No previous resilient algorithms

@ Trade-off: private memory P vs performance
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Our results

Provide an optimal resilient cache-oblivious algorithm for the Fast Fourier
Transform

@ No previous resilient algorithms

@ O (loglog n) private memory (no trade-off)

o All algorithms are correct w.h.p.

@ Proposed techniques may be used for translating other recursive
algorithms into resilient algorithms
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The rest of the talk. ..

We focus on a case of local dependency dynamic programming

Computing the edit distance (ED) of two strings:

@ We provide a resilient cache-oblivious algorithm for ED using
O (log n) private memory

@ Then we show how to extend the algorithm to use P private memory

Similar techniques for GEP and FFT
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First, some notation. ..

@ r-resilient variable x

Write 2r + 1 copies

Read by majority (in O (1) safe memory)

At least r 4 1 faults are required to corrupt x

An adversary can corrupt at most |§/(r + 1)| r-resilient variables

@ Rabin fingerprint 14 of a vector A = (ap, a1,...,an—1)
n—1 ]
ha = Z 2:2"(==1) " mod p
i=0

e p prime number, w memory word size

o Can be computed with a scan of A and O (1) space

o If entries are not accessed in order, fingerprint may require O (nlog n)
due to exponentiation
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Running example: ED

Edit distance
@ Input: strings X =x1,... %0, Y =y1,...Vn.

@ Output: their edit distance

Edit — Distance(X,Y) = number of edit ops {ins, del, sub} required to
transform X into Y

e DP table for ED: (n+ 1) x (n+ 1) table, given by the following
recurrence:
i+J ifi=0o0r;j=0
ijl=<« fi—1,j—1] ifi,j>0and x; = y;
L+ min{{[i,j—1],¢[i — 1,j]} ifi,j>0and x; # y;
@ The ED is ¢[n, n]

e O (n2) running time
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A cache-oblivious algorithm for ED

Cache-oblivious algorithm [Chowdhury and Ramachandran, 2007]
@ Input: Strings X and Y’; boundaries T and L
@ Output: boundaries R and D

@ Decomposes the table into 4 subtables

@ Recursively computes the output x| |zf-m—mm e p————
boundaries of each subtable
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Some ideas

A bad idea

All variables are d-resiliently
e O (5n2) time
e O <5%> misses
@ Match lower bounds when 6 = O (1)

A good idea
o Use [0/2]-resilient variables at recursive level i
@ The adversary can corrupt at most 2/ subproblems at level i

@ Each input at level-i is associated with a fingerprint computed with
correct values using prime p; (write fingerprint).

@ The algorithm can recognize faults on inputs w.h.p.

F. Silvestri (UniPD) FSTTCS 2011 - Mumbai 26 / 37



The resilient algorithm

The algorithm at recursive level i

| ¥

-

Input: strings X and Y, boundaries L and
T, the respective write fingerprints in private
memory.

Output: boundaries R and D and the x| |z
respective write fingerprints. null if faults
are found.

Note: Inputs and outputs are [§/2/]-resilient

and fingerprints are computed with prime p;. Private memory (input):
WX, \UY) WT; \UL

Private memory (output):
VR, Vp
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The resilient algorithm (2)

Algorithm:

© Compute the 4 subproblems recursively
@ For each subproblem:
@ Extracts inputs as [§/2/+1]-resilient
variables
@ Create write fingerprints of
subproblem inputs with prime p;1
©® While creating the new fingerprints
check correctness using the old ones

© If a fault is detected return null

@ If a subproblem return null change
prime pj;+1 and restart subproblem
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Fingerprint mismatches

Input: vector X ([§/2/]-resilient) and W(X) (computed with prime p;)

© At the same time computes
o fingerprint W(X') of X" using p;41
o fingerprint W(X’) of X’ using p;
X'

X

v WX

@ Compute fingerprint W(X) of X using p; starting from W(X’)
X

X

wx) — 900
Q If U(X) # W(X), at least [§/2'] 4 1 faults occur, then return null
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@ Successful recursive calls:

o No fingerprint mismatch
o T(n,6)=4T(n/2,6/2) +© (n(6 +1)) = O (n* + dnlogn)

@ Unsuccessful calls (ov < § actual number of faults):
o Fingerprint mismatch at level /
e at least 6/2' values corrupted
e at most a2'/§ recomputations at level i

log & ; log &
a2’ T(n, o) 1
ST < T(0,0)Y 5 < T(n,0)

i=1 i=1
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Bounds for LD-DP

@ Running time: O (n2 + dnlog n)
e Match O (n?): 6 = O(n/log n)
o Cache misses: O (n?/(MB) + dnlogn/B)

Lower bound: 2 n?/(MB) + 6n/B
~—— ~——

non-resilient bound  resilient bound

Previous result: O (nm/B) misses even without faults

The algorithm is cache-oblivious

Requires private memory © (log n)
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Trading time for private memory

P private memory words

A X A matrix decomposition:
A=0(n/P), logy n = © (P)

L T
Resiliency decreases by a factor of A at
each call

Subproblems solved in Z-order (same as
recursive, good temporal locality)

Row and column outputs of each
subproblem are stored in two vectors, R
and C
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Trading time for private memory

@ (1) subproblems: cannot check
correctness of input and output
boundaries before each recursive call

e Fingerprints aggregate boundaries of all
A X A subproblems

Lazy fault detection
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Data access pattern vs. fingerprints

Read/write data access patterns are different. . . but regular!

1 2 3 1
@ "Out-of-order” fingerprints: compute 5 16 27 38 4
write fingerprints according to read
pattern 9 5 10 6 11 7 12 8
o Be careful: need to maintain O (1)
amortized update time (involves S - == -
exponentiations)
13 14 15 16
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Time — private memory trade-offs

@ Running time: O (n2 + 5n1+c/PP)
o Cache misses: O (n?/(MB) + én'*</PP/B)

@ Private memory P from O (1) to © (log n)
o n/P = 0 (1) when P = O (log n)
@ Similar trade-offs for GEP
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Conclusion

Future research:
© Can we reduce private memory without affecting performance?
@ Exploiting redundancy vs ECC like in [Christiano et al., 2011]

© J-obliviousness
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