
Oblivious Algorithms for Multicores and Network of Processors ?

Rezaul Alam Chowdhury1, Francesco Silvestri2, Brandon Blakeley1, and Vijaya Ramachandran1

1 Department of Computer Sciences, University of Texas, Austin, TX 78712, USA,
{shaikat,blakeley,vlr}@cs.utexas.edu

2 Department of Information Engineering, University of Padova, Padova, Italy,
silvest1@dei.unipd.it

UTCS Technical Report TR-09-19

July 22, 2009

Abstract. We address the design of parallel algorithms that are oblivious to machine parameters for two
dominant machine configurations: the chip multiprocessor (or multicore) and the network of processors.
First, and of independent interest, we propose HM, a hierarchical multi-level caching model for multicores,
and we propose a multicore-oblivious approach to algorithms and schedulers for HM. We instantiate this
approach with provably efficient multicore-oblivious algorithms for matrix and prefix sum computations,
FFT, the Gaussian Elimination paradigm (which represents an important class of computations including
Floyd-Warshall’s all-pairs shortest paths, Gaussian Elimination and LU decomposition without pivoting),
sorting, list ranking, Euler tours and connected components.
We then use the network oblivious framework proposed earlier as an oblivious framework for a network
of processors, and we present provably efficient network-oblivious algorithms for sorting, the Gaussian
Elimination paradigm, list ranking, Euler tours and connected components. Many of these network-
oblivious algorithms perform efficiently also when executed on the Decomposable-BSP.

1 Introduction

The cache-oblivious framework [20] has provided a convenient and general-purpose approach to devel-
oping algorithms that perform efficiently in a microprocessor with a single core and a cache hierarchy.
A noteworthy feature of such algorithms is that they incorporate no machine parameters in their
code, and yet are shown to perform efficiently at all levels of the cache hierarchy (assuming a good
cache replacement policy is used). In concept, oblivious algorithms can be defined on other models,
in particular on those that represent parallel computing platforms. The first attempt in this direc-
tion appears in [7], where the authors propose the network-oblivious framework (NOF) for parallel
distributed-memory computers interconnected by a fixed network.

We are now moving into a new parallel platform as we enter the multicore era: chip multicores
(CMP) are the current default for microprocessors with 2 and 4 cores already on most desktops,
and the number of cores is expected to increase dramatically for the foreseeable future. Multicores
represent a paradigm shift in general-purpose computing, away from the von Neumann model that
has served as a simple and effective model for general-purpose algorithm design for the past several
decades. In contrast to the von Neumann model of a single processor that executes unit-cost steps
with unit-cost access to data in memory, a typical multicore is a collection of processors/cores on a
chip communicating through a cache hierarchy under a shared memory. Thus efficient algorithms for
multicores must address both caching issues and shared-memory parallelism.

With multicore becoming the default desktop configuration, there is a pressing need to develop
efficient and portable code for this computing environment. Building on a 3-level multicore caching
? This work was supported in part by NSF Grant CCF-0514876 and NSF CCF-0850775; the third author was also

supported by EU/IST Project “AEOLUS”, and by MIUR of Italy under project “MAINSTREAM”. Part of this work
was done while the third author was visiting the Department of Computer Sciences, University of Texas, Austin.

model proposed in [8], in this paper we propose a hierarchical multi-level caching model (HM) for
multicores and a multicore-oblivious framework (MOF) for HM. Multicore-oblivious algorithms make
no mention of the number of cores, number of levels in the cache hierarchy, or the cache size or block
size at any level in the multicore. However, the algorithm is provided with a small set of instructions
that it can use to provide advice to the run-time scheduler on how to schedule the parallel tasks.
Using this framework we present several multicore-oblivious algorithms for fundamental problems,
including prefix sums, matrix computations, Fast Fourier Transform (FFT), sorting, list ranking (LR),
some graph problems, and I-GEP, which solves important applications of the Gaussian Elimination
Paradigm [13].

Building on the multicore-oblivious algorithms we also develop efficient network-oblivious algo-
rithms for list ranking, some graph problems and I-GEP. In order to achieve optimal communication,
network-oblivious algorithms are somewhat modified from their multicore counterparts due to the
different models in which algorithms are specified: a shared-memory model for multicore-oblivious
algorithms, a distributed-memory model for the network-oblivious ones. Furthermore, we provide an
improvement of the network-oblivious sorting algorithm based on ColumnSort given in [7].

1.1 Organization of the Paper

In Section 2 we present HM, a hierarchical caching multicore model, generalizing the 3-level model in
[8]. We propose the notion of a multicore-oblivious algorithm, in which the algorithm is specified at the
highest level of parallelism and makes no mention of machine parameters, but is allowed to include
certain simple ‘hints’ to the run-time scheduler. We present provably efficient multicore-oblivious
algorithms for MT, MM, and FFT.

In Section 4 we quickly review the network-oblivious framework, describe a network-oblivious
algorithm for prefix sums and present an improved version of the network-oblivious algorithm for
sorting based on ColumnSort given in [7].

In Section 5, we provide some background on GEP for completeness and present a provably
efficient MO and NO algorithms for the important applications of GEP solved by I-GEP: Gaussian
elimination and LU-decomposition without pivoting and Floyd-Warshall’s all-pairs shortest paths in
edge-weighted graphs. In order to achieve optimal communication in the network model, the network-
oblivious algorithm, named N-GEP, is modified from I-GEP. This modified algorithm however, maps
back as an HM algorithm with the same performance bounds as I-GEP.

In Section 7, we present efficient MO and NO algorithms for the list ranking problem and some
graph problems, including Euler path and connected components.

Finally, in Section 8 we give some final remarks and present a summarizing table which reports
the complexities of MO and NO algorithms described in this paper.

2 HM Model and Tiling Algorithms

In its simplest form, a multicore is modeled as a collection of processing elements or cores, each
with a finite cache (a private L1 cache), and with an arbitrarily large main memory that contains
all of the data. Several parallel, cache-efficient algorithms on this type of multicore model have been
presented, e.g., for B-trees in [4], for matrix multiplication and other problems in [21], for the Gaussian
elimination paradigm (I-GEP and C-GEP) [13], and for sorting in [2, 10, 15]. A complementary model
in which there are no private caches but instead a single shared cache of finite size below an arbitrarily
large shared memory is considered in [9] and for I-GEP and C-GEP in [13].

In this section we present a hierarchical caching model for multicores (the HM model) and we
present optimal HM implementations of three general classes of dynamic programming algorithms

2

CPUCPU CPUCPU CPUCPU CPUCPU CPUCPU CPUCPU

L1L1

L2L2

L3L3

Main MemoryMain Memory

Fig. 1. The HM model illustrated for h = 4.

using tiling sequences [14]. These algorithms, however, need to specify the HM parameters in their
tiling sequences in order to exploit good performance and hence they are not oblivious to the machine
parameters. In Section 3 we introduce the notion of multicore-obliviousness and the rest of the paper
presents efficient multicore-oblivious algorithms for a wide variety of problems.

2.1 The HM Model

Since multicores are evolving towards a hierarchy of caches, a 3-level multicore model was introduced
in [8], and algorithms for this model are given in [8, 14]. In this section, we describe the HM model,
a natural hierarchical generalization of the 3-level model to any number of cache levels h ≥ 3. (This
generalized model is briefly mentioned in [14].) A somewhat different hierarchical model for multicore
computing is given in [32], using gap and latency parameters instead of cache misses as the cost
measure. More recently, a model similar to ours is mentioned in [10].

The hierarchical multi-level multicore model (or HM model) with h levels consists of a collection
of cores Pi, 1 ≤ i ≤ p, with a a hierarchy of caches of finite but increasing sizes at levels 1 up to
h − 1, that are successively shared by larger groups of cores. At level h we have a shared memory
that is arbitrarily large. For 1 ≤ i ≤ h− 1, a level i is denoted by Li, and there are qi of them. The
size of each Li is Ci, the block-size at level i is Bi, and the number of successive level-(i− 1) caches
that share a given level-i cache is pi. By p′i we denote the number of cores subtended by any Li, i.e.,
p′i = p/qi =

∏i
j=1 pj . In the default model we assume that ph = 1, i.e., there is a single cache of finite

size Ch−1 at level h− 1 so that the top two levels h− 1 and h represent a possible sequential cache
hierarchy at the highest level (see, e.g., [20] and references therein). Also, in the default model, we
assume that p1 = 1, i.e., each core has a private cache at the first level. For levels 2 ≤ i ≤ h − 1 we
assume pi ≥ 2. Clearly,

∏h
i=1 pi = p = q1.

We assume that an ith level cache is at least a constant factor larger than the combined sizes
of level (i − 1) caches, i.e., Ci ≥ c · pi · Ci−1 for all i, for a suitable constant c > 1. Similar to the
sequential cache hierarchy we assume the inclusion property, namely that all elements in each cache
at level i are also present in the cache it shares at level i+1. We assume an optimal cache replacement
policy is used at every cache. For many of the results in this paper a simple generalization of LRU to
multi-level caches will suffice, namely the block evicted at a cache λi to make room for a new block
is the one with entries that were least recently used among those blocks not contained in lower level
caches that share λi.

The performance of an HM algorithm is determined by its parallel complexity, which is the number
of parallel steps executed (assuming all cores run at the same rate), and the cache complexity, which
is specified by the maximum number of block transfers into and out of any single cache at each level
i, for 1 ≤ i ≤ h − 1. We will sometime use the total cache complexity, which is the total number of

3

block transfers into and out of all caches at each given level i; this measure is useful when comparing
to the sequential cache complexity.

We have chosen to stay with a simple definition of the HM model, leaving unspecified several
parameters of a multicore’s caching system that are not salient to the algorithms we present in this
paper. For the algorithms we consider in this paper, we do not need cache coherence protocols since
the updates that are performed in parallel in our algorithms are always on disjoint sets of data, and
hence coherence is never invoked. We specify parallelism by parallel for loops and forking and joining
through recursive calls.

The multicore model in [8] is the HM model with h = 3: it has p cores, p caches of size C1 at level
1, one cache of size C2 at level 2, and p2 = p. As required in the default HM model, it has p1 = 1,
and at the highest level 3 it has p3 = 1 and size of that memory C3 =∞.

As noted in [8] for the 3-level multicore model, there is an inherent tension between cache-efficient
scheduling for private L1 caches, and that for a single shared L2 cache: for the former, a schedule that
gives large independent tasks to the different cores is typically cache-efficient, while for the latter, a
very fine-grained schedule where all cores work on the portion of the data present in the shared L2

cache is effective.
Recently, multicore algorithms for sorting are given in [2, 10, 15]. All three are for the simple

multicore with private caches, but the latter two algorithms (in [10, 15]) claim fairly good performance
for a multi-level cache hierarchy as well. However, this claimed good performance is still a factor of p′i
worse than the best possible for each cache level i, and is obtained by simply assigning to each core,
a proportionate slice of the level-i cache above it, for each i. With this mechanism, one can invoke
properties and results of the sequential cache-oblivious model to extend the results for the L1 cache
to all levels of the cache hierarchy. In contrast to this, our focus is in algorithms that fully exploit
the higher level caches as was achieved for the 3-level case in [8, 14], rather than just a small fraction
of the best possible.

2.2 Tiled HM Algorithms

In this section we present some provably optimal implementations of DP algorithms in the HM model
by generalizing the results in [14] (which were for the 3-level model) for the following three large classes
of algorithms:

1. LDDP (Local Dependency DP) problems that include Longest Common Subsequence (or LCS),
and several sequence alignment problems of importance in bioinformatics and string matching.

2. GEP (Gaussian Elimination Paradigm), which includes the Floyd-Warshall DP for all-pairs short-
est paths in graphs as well as several other important problems such as LU-decomposition and
Gaussian elimination without pivoting and matrix multiplication.

3. Parenthesis problem, which includes DPs for RNA secondary structure prediction, optimal ma-
trix chain multiplication, construction of optimal binary search trees, and optimal polynomial
triangulation.

In [14], tiled parallel algorithms for each of these three problem classes were presented, which gave
excellent parallel and cache-efficient results for the 3-level multicore model (as well as its predecessors,
which we named as D-CMP and S-CMP). We now extend this tiling strategy to the HM model.

In each of the tiled parallel algorithms presented in [14], there is a recursive algorithm where
the tiling parameter is specified at each level of recursion. The tiling parameter is a non-negative
integer (that could depend on input size, size of caches and number of cores), and is associated with
a parallel (recursive) execution of each subproblem at that level of recursion. In [14], after specifying

4

a general tiled parallel algorithm, it is shown that simple settings of the tiling parameters give the
optimal performance for 3-level multicore as well as for D-CMP, S-CMP and sequential executions.
In recursion levels where no parallelism is exposed, the tiling parameter is set to 2, and the execution
is sequential. The reader is referred to [14] for further details on these algorithms.

For the HM model, we can start with the same parallel tiled algorithm but we need to specify
the tiling recursion level as well as the tiling parameter for each level of the memory hierarchy. So,
rather than just 1 (= h − 2) nontrivial tiling parameter, the algorithm will have h − 2 nontrivial
recursion levels with their associated tiling values. These levels are determined as follows: For each
level-i memory (of size Ci) we use the recursion level ri where the size of each subproblem is pi ·Ci−1,
and we use tiling parameter pi.

For example, for LCS, the first algorithm considered in [14], the smallest level of recursion rh−1 =
log n

ph−1·Ch−2
, and the tiling parameter is ph−1. For h − 1 > i ≥ 2, ri = ri+1 + log Ci

pi·Ci−1
, and the

tiling parameter is pi. At recursion level r2 we fork out the parallel computation on the p2 base
(core) processors in the HM model, and the remaining levels of recursion are executed sequentially
on the assigned core. Since all of these cores are computing in parallel according to the tiled parallel
algorithm, the parallel time bound remains O((n2/p) + n), where p is the total number of processors
(p = Πh−1

i=2 pi). Also, the size of each subproblem assigned to a memory at level i is of size Ci and
hence the sequential cache complexity is achieved at every level of the memory hierarchy.

The tiling parameters for HM for the 3 classes of algorithms considered in [14] are given in Table
1. The associated HM algorithms have total cache complexity at every cache level that match the
sequential cache complexity, and also achieve optimal speed-up up to the critical pathlength of the
computation. These results can be established in a fairly straightforward way by generalizing the
proofs in [14].

Problem I/O Previous I∞ Our I∞ Tiling Parameters for Our HM Algorithms

LCS & PA O
�

n2

MB

�
n2 (seq.) O (n)

t[ri] = pi, h− 1 ≥ i ≥ 2,
ri = recursion level where subproblem size is pi · Ci−1

& t[d] = 2 with no parallelism if d 6= any ri

Median
Parenthesis

GEP
O
�

n3

B
√

M

� n3 (seq.)
∗

O
�
n log2 n

�
[13, 8]

O (n)
t[ri] =

√
pi, h− 1 ≥ i ≥ 2,

ri = recursion level where subproblem size is pi · Ci−1

& t[d] = 2 with no parallelism if d 6= any ri

RNA-SP O
�

n4

B
√

M

�
n4 (seq.) O(n) −

Table 1. Table of our dynamic programming results for the HM model. Here the ‘I/O’ column lists the sequential
cache-oblivious bound, and the I∞ column lists the number of parallel steps in a work-optimal parallel algorithm whose
total cache complexity matches the sequential bound at every level of the cache hierarchy. The tiling parameters are
explained briefly in the text of the paper, and in more detail in [14].

The results summarized in Table 1 represent tiled multi-level algorithms that make very effective
use of both parallelism and the cache hierarchy. However, these algorithms use the number of cores
and the sizes of the caches to set the tiling parameters. In the next section we introduce our notion of
multicore-obliviousness, and we present multicore-oblivious algorithms with excellent parallelism and
cache efficiency for a wide variety of problems. Some of these algorithms can be viewed as extensions
of results in [8] for the 3-level multicore model, while several others are new results. Among the
multicore-oblivious algorithms we present is an algorithm for GEP in Section 5, for which Table 1
lists tiling parameters for a tiled HM algorithm.

5

3 Multicore-Oblivious Algorithms on the HM Model

For the effective use of multicores we need to have not only algorithms that are capable of running
efficiently on them, but also run-time schedulers that can effectively extract this efficient performance.
Also, for portability reasons, it is desirable to have a multicore-oblivious (MO) algorithm, i.e, an
algorithm that does not use specific values for multicore parameters such as number of cores, number
of levels of caches or their sizes, block sizes, etc., yet performs efficiently across a wide variety of
multicores. This is in contrast to the tiled algorithms described in the previous section.

To address this challenge, we propose some simple enhancements to HM algorithms. These en-
hancements are in the form of instructions or ‘hints’ in the algorithm that are meant to be interpreted
and used by the run-time scheduler to decide how to schedule parallel tasks generated during execu-
tion. These hints can be either in the form of information known at compile time, or the result of a
computation at run-time that is tagged as being meant for the run-time scheduler. In a multicore-
oblivious algorithm, these hints must be independent of multicore parameters such as number of
cores, number of cache levels, cache or block sizes.

Our initiative to introduce these special instructions for the run-time scheduler is in the spirit
of the recent trend towards ‘multiresolution’ languages [11], where the basic programming language
is enhanced with constructs that can be used by the savvy programmer to enhance performance. It
appears that some mechanisms of this type are needed in order to extract efficient performance of
algorithms on multicores. Our design can be viewed as one approach to extracting good performance
on multi-level multicores from certain types of algorithms through a small and controlled set of such
enhancements.

The multicore-oblivious algorithms we present use two main types of scheduler hints, and a third
one that combines these two. Of these CGC is useful on scheduling computations involving parallel
for loops, and SB and CGC⇒SB are useful for algorithms that recursively spawn parallel tasks. In
order to simplify the exposition of these hints we now introduce some terms and notations. Let us
define the shadow of a level i cache λi as those p′i cores that share λi as their level i cache. We say
that a task τ is anchored at a cache λi (or is assigned to λi) provided it is at the smallest level i
such that Ci is large enough to meet the space requirement of τ , and all subtasks generated by τ are
executed by cores under the shadow of λi.
A technical point: In order to avoid the cache misses caused by ping-ponging of cache blocks between
private caches, the scheduler respects block boundaries whenever feasible during the decomposition
and distribution of tasks. Ping-ponging arises when writes to a block by any given core are interleaved
by reads/writes by other cores: each write removes the block from every other core’s L1 cache if it
already contains the block, and any such core must re-fetch the block if it wants to perform subsequent
read/write operations on the block. This results in an excessive number of block transfers. We also
assume this hardware block invalidation mechanism is supported at higher level caches at size B1.

3.1 Coarse-Grained Contiguous (CGC) Scheduling

The coarse-grained contiguous (CGC) scheduling is a very simple scheduler hint that could be con-
sidered a default option for the HM scheduler. This is an effective schedule for HM algorithms whose
primary memory access pattern is simple scans of the input data. It simply distributes an ordered
collection of parallel tasks in contiguous chunks among a sequence of contiguous cores. Suppose τ
is a task anchored at some cache λ, and has a parallel loop with the index variable k running from
1 to t. If there are p(λ) cores under the shadow of λ, under CGC scheduling the values taken by k
are decomposed into bt/p(λ)c contiguous segments, and the j-th such segment is assigned to the j-th

6

core from the left under the shadow of λ. It is ensured that the length of input data scanned by each
segment is at least B1 even if that requires keeping some of the p(λ) cores idle.

We now give two important examples of algorithms scheduled with CGC.

Prefix Sums. We now describe an optimal multicore oblivious algorithm solving prefix sums. Con-
sider a sequence (x0, x1, . . . , xn−1) of n elements taken from a set S with an associative binary
operation ∗. We define the ith partial sum si of such a sequence to be si = x0 ∗ x1 ∗ · · · ∗ xi−1. Then
the prefix sums of such a sequence, originally described by Ladner and Fischer (cite), is the n partial
sums of the sequence.

We show that the recursive algorithm due to Ladner and Fischer [26] originally posed in the
parallel context has optimal cache efficiency when the coarse grained contiguous scheduler is used.
At a high level, elements are added in pairs, the resulting problem is recursively solved, and then this
solution is extended to the remaining summands. We now present the algorithm formally and then
analyze its complexity.

MO–PS(x0, x1, . . . , xn−1)
Input: sequence (x0, x1, . . . , xn−1) of summands with associative binary operator ∗.
Output: the sequence (s0, s1, . . . , sn−1) of partial sums si for each 0 ≤ i ≤ n− 1.
1: if n = 1 then s0 := x0 return endif
2: [CGC] pfor 0 ≤ i ≤ (n− 1)/2 do yi := x2i ∗ x2i+1 end pfor
3: (z0, z1, . . . , z(n−1)/2) := MO–PS(y0, y1, . . . , y(n−1)/2)
4: [CGC] pfor 0 ≤ i ≤ n− 1
5: if i is even then si := zi/2

6: else si := z(i−1)/2 ∗ xi endif
7: end pfor
8: return (s0, s1, . . . , sn−1)

Fig. 2. Multicore Oblivious Prefix Sums

Theorem 1. When executed on a h-level HM model with p cores, MO–PS on an input of size n
terminates in O(n/p+B1 log p) parallel steps, and incurs Qi(n) = O(n/(qiBi)+ log qi) caches misses
at each of the qi caches in level i of the hierarchy.

Proof. The correctness of this algorithm can be proved by induction on k, where the size of the input
n = 2k (see [25] for the details). We now analyze the complexity. The coarse grained contiguous
scheduler assigns contiguous blocks of elements to contiguous processors and requires that at each
level i of the cache hierarchy, at most one nonempty level i cache is given less than Bi units of
data, even if this requires some processors to idle. In lines 2, 6, and 7, we have O(n) summations
to distribute across the min(p, d n

B1
e) processors which the CGC scheduler assigns tasks to. As each

recursive stage decreases the size of the input by a factor of two, the number of processors the CGC
scheduler assigns tasks to decreases by a factor of two as well whenever n ≤ pB1. We thus derive the
following time complexity:

T (n, p) =

T (n/2, p) +O(n/p) pB1 < n
T (n/2, p/2) +O(n/p) B1 < n ≤ pB1

O(n) n ≤ B1

This recurrence solves to O(n/p + B1 log p). Next, we analyze the level i cache complexity of this
algorithm. Similarly, the number of level i caches across which the input is distributed decreases in

7

proportion to n. We thus derive the following recurrence relation:

Qi(n, qi) =

Qi(n/2, qi) +O(n

qiBi
) qiBi < n

Qi(n/2, qi/2) +O(n
qiBi

) Bi < n ≤ qiBi

O(1) n ≤ Bi

This recurrence solves to O(n
qiBi

+ log qi). Thus, the cache and time complexity of this algorithm
match the bounds stated. ut

Furthermore, note that these complexity bounds also apply to every algorithm which recursively
solves a problem by a scan of the data at each level of recursion and then solving a geometrically
smaller subproblem all the way down to a constant size.

Matrix Transposition (MT). Given an ordered pair of log n-bit indices (i, j), we define β(i, j) as the
ordered pair of integers (i′, j′) obtained by bitwise interleaving of the binary representations of i and
j. In other words, if i = ir−1ir−2 · · · i0 and j = jr−1jr−2 · · · j0, then i′ = ir−1jr−1ir−2jr−2 · · · ir/2jr/2

and j′ = i(r−2)/2j(r−2)/2 · · · i0j0 (here r = log n and we have assumed for convenience that r is even;
the case when r is odd is handled in a natural way). We let β−1 be the inverse of β.

A multicore-oblivious HM algorithm for matrix transposition is given in Fig. 3 which uses the
CGC scheduler hint. This algorithm is based on the matrix transposition algorithm for the network-
oblivious model in [7]. We assume that β(i, j) and β−1(i, j) can be computed in constant time by the
hardware.

MO-MT(A, n)
Input: the input is an n× n matrix A in row-major;
Output: the output is the transpose AT , again in row-major.
Comment. β(i, j) is defined in the text.
1: [CGC] pfor 1 ≤ i ≤ n, 1 ≤ j ≤ n do I[i, j] := A[β−1(i, j)] end pfor;
2: [CGC] pfor 1 ≤ i ≤ n, 1 ≤ j ≤ n do AT [i, j] := I[β(j, i)] end pfor;

Fig. 3. MO-MT: a multicore-oblivious algorithm for matrix transposition.

Note that the parallelization of the recursive optimal cache-oblivious algorithm for matrix trans-
position in [20] would take Θ(log n) parallel steps and hence would not achieve optimal constant
critical pathlength of our algorithm.

Theorem 2. MO-MT correctly transposes the matrix A in an n2 core HM model in O(n2/p + B1)
parallel steps with O

(
n2/(qiBi) + Bi

)
cache misses at each of the qi caches in the ith level of the

cache hierarchy, for all i, 1 ≤ i ≤ h− 1, assuming that all caches are tall, and all Bi ≤ n.

Proof. Consider a level-l cache, and let Bl = B. Let S be a contiguous sequence of B elements written
into I by a core q, starting with position (i1, j1) and ending in position (i2, j2). Since B < n, the
bit representation of all (i, j) ∈ S will have at most two different bit patterns in the most significant
2 log n− log B positions (and only one bit pattern in these positions if the indices don’t wrap around
to two rows.)

Consider the block SA that contains A[β−1(i1, j1)]. Here again, the bit representation of all (i, j) ∈
SA will have at most two different bit patterns in the most significant 2 log n − log B positions,
and their bit-interleaved addresses will have at most 2 different bit patterns in the most significant
2 log n− 2 log B bit positions, and will differ in only the lowest 2 log B bit positions otherwise. Hence
the elements in block SA of array A will lie in within distance B2 of one another in each of at most
two sequences of positions in I.

8

Since I[i, j] is filled in row-major sequence, starting with position (i1, j1), the blocks containing
the corresponding elements in array A are brought into cache. Although up to B different blocks may
be brought in to fill the first block of elements in I[i, j], starting at β(i1, j1), all of the elements in
each of these B blocks are meant to be located in positions in I that are in at most two different
groups of elements that are within distance B2 of one another in row major order in I. Since the
cache is assumed to have size Ω(B2) these elements will be available in the cache when they need to
be written into I. Hence the write into I has the same cache complexity, to within a constant factor,
as a scan, except that up to B2

l elements remain unused at the end in a level-l cache, for each l. Hence
the result follows for step 1. The analysis for step 2 is similar.

Finally, if n2 < p ·B1, the scheduler will assign a block of data to
⌈
n2/p

⌉
) cores in order to respect

the L1 block boundaries. Hence in this situation, the parallel time is O(B1). Thus the overall parallel
time is bounded by O(n2/p + B1). ut

3.2 Space-Bound (SB) Scheduling

In space-bound (SB) scheduling the algorithm supplies an upper bound on the space used by each
task that is forked during the computation. To see why such a scheduler hint is helpful, consider a
core P that is executing a task τ whose computation has a space upper bound of s(τ), and let i be
the smallest level in the cache hierarchy for which s(τ) ≤ Ci. If i ≤ h− 1, and λi is the level i cache
above core P , then as long as all tasks forked during execution of task τ are assigned to cores that
also share cache λi (i.e., that lie in λi’s shadow), the only cache misses incurred at level i during
execution of τ are those needed to read in the initial input and write out the final output.

For each level i cache λ, the SB scheduler maintains a queue Q(λ) for tasks with space bound not
exceeding Ci which are to be executed under the shadow of λ. When the current task assigned to λ
completes, the first task τ in Q is dequeued and executed while anchored to λ. When τ forks a task
τ ′, this task is assigned to the least loaded cache under λ’s shadow at level i− 1 if s(τ ′) ≤ Ci−1, and
it is enqueued in Q otherwise.

In order to keep the total number of cache misses under control, the SB scheduler makes sure that
if any task τ with s(τ) ≤ B1 is assigned to some core P for execution then all its descendant subtasks
are also assigned to P (i.e., anchored at the same level i cache as τ). The SB scheduler should also use
some strategy to minimize the ping-ponging of shared blocks between caches. One approach could be
as follows which avoids ping-ponging by tasks with output arrays larger than 2B1. When any task τ
anchored at some level i > 1 generates a set of subtasks migrating to level i− 1, each of them makes
a local copy (from its parent cache at level i to its own cache at level i − 1) of each array it needs
to modify or generate, and works on them. When each of these subtasks completes execution, it first
copies the first half of each array it has updated/generated from its local cache to the parent cache.
Then it waits until all other subtasks of the set do the same. After this synchronization point, all
subtasks in the set copy the second half of the arrays to the parent cache. Observe that provided the
length of each output array copied back by the subtasks is at least 2B1, this approach ensures that
no two subtasks write to the same block at the same time.

We apply the SB scheduler to recursively forking tasks where a constant number of tasks (typically
2) are generated at each fork, each with a space bound that is a constant factor smaller than that of the
forking task. We expect that the general space-bounded strategy is likely to have wide applicability
in multicore scheduling, and can be configured in ways other than the SB and CGC⇒SB schedulers
we use.

The following algorithm for matrix multiplication (MM) is a simple example of SB scheduling.
Another application of the SB scheduler, I-GEP, is presented in Section 5.

9

Matrix Multiplication (MM). In Fig. 4 we provide an algorithm (MO-MM) for matrix multipli-
cation in the HM model based on the SB scheduling strategy. The algorithm 3 is slightly modified
from the original cache-oblivious matrix multiplication algorithm in [20]. While both algorithm cor-
rectly compute the result (for the case when addition is associative and commutative) we choose to
use this version since a similar algorithm has optimal communication in the network setting [7].

MO-MM(A, B; C; n)
Input: two n× n matrices A and B;
Output: the product matrix C, initially all zeros.
Space Bound: S(n) = 3n2.
1: if n = 1 then return C = C + A ·B;
2: [SB] in parallel: MO-MM(A00, B00; C00; n/2), MO-MM(A01, B11; C01, n/2)

MO-MM(A10, B01; C11; n/2), MO-MM(A11, B10; C10, n/2)
3: [SB] in parallel: MO-MM(A01, B10; C00, n/2), MO-MM(A00, B01; C01, n/2),

MO-MM(A11, B11; C11, n/2), MO-MM(A10, B00; C10, n/2);

Fig. 4. MO-MM: a multicore-oblivious algorithm for matrix multiplication.

The following theorem provides the parallel running time and cache complexity of MO-MM under
the space-bound scheduler described above.

Theorem 3. Consider the h-level HM model with p cores, where all caches in the hierarchy are tall
(i.e., Ci = Ω(B2

i), 1 ≤ i ≤ h − 1), and Ci > 2 · pi · Ci−1 for i ∈ [2, h − 1]. When executed under
the space-bound scheduler, MO-MM terminates in T (n) = O

(
n3/p + nB1 + B

3/2
1

)
parallel steps,

while incurring Qi(n) = O
(
n3/

(
qiBi

√
Ci

)
+
(
n2
√

Ch−1

)
/
(
qiBi

√
Ci

)
+ Ci/Bi +

√
B1

)
cache misses

at each of the qi caches in level i of the hierarchy. For n2 ≥ Ch−1, the overall parallel running time
and the number of cache misses at each level i cache reduce to O

(
n3/p

)
and O

(
n3/

(
qiBi

√
Ci

))
,

respectively.

Proof. (Sketch) Recall that if a task τ has space bound s(τ) ≤ B1, the SB scheduler will assign τ and
all its descendant subtasks to the same core. Hence, if n2 = O (B1), MO-MM will take O

(
B

3/2
1

)
time to terminate. Otherwise, we can view the execution of MO-MM on n × n input matrices as
consisting of n/

√
B1 phases to be executed in sequence with each phase containing n2/B1 parallel

tasks with space bound Θ (B1) each. Each such task will be executed exclusively on a single core
in O

(
B

3/2
1

)
time. Hence, the number of parallel steps is O

((
n/
√

B1

)
·B3/2

1 ·
(
1 +

(
n2/B1

)
/p
))

=

O
(
n3/p + nB1

)
. The claimed bound follows from the two bounds derived above.

In order to derive the cache complexity of MO-MM, we will consider the following three cases
based on the space bound σ of each migrated task τ anchored at each level i cache λ: (i) σ = Ci, (ii)
Ci > σ > B1, and (iii) σ ≤ B1. For case (i), observe that O

(
1 +

(
n/
√

Ci

)3
/qi

)
tasks with space

bound Ci will be anchored at λ, and each of them will incur O
(√

Ci + Ci/Bi

)
cache misses at λ.

Thus Qi(n) = O
((

1 +
(
n/
√

Ci

)3
/qi

)
·
(√

Ci + Ci/Bi

))
= O

(
n3/

(
qiBi

√
Ci

)
+ Ci/Bi

)
in this case.

In case (ii), O
(
1 + 8h−i−1/qi

)
tasks each with space bound n2/4h−i−1 < Ci will be anchored at λ,

which leads to Qi(n) = O
(
n/2h−i−1 +

(
n2Bi

)
/4h−i−1 + (nCh−1)/(qiCi) +

(
n2
√

Ch−1

)
/
(
qiBi

√
Ci

))
= O

((
n2
√

Ch−1

)
/
(
qiBi

√
Ci

)
+ Ci/Bi

)
since Ci > 2 · pi · Ci−1 ≥ 4 · Ci−1 for i ∈ [2, h − 1].

Similarly, in case (iii), Qi(n) = O
(√

B1 + B1/Bi + (nCh−1)/(qiCi) +
(
n2
√

Ch−1

)
/
(
qiBi

√
Ci

))
=

O
((

n2
√

Ch−1

)
/
(
qiBi

√
Ci

)
+ B1/Bi +

√
B1

)
. The bound claimed in the theorem follows by combin-

ing the three bounds derived above. ut
3 In the paper we denote the quadrants of a matrix A as: A00 (top-left), A01 (top-right), A10 (bottom-left), A11

(bottom-right).

10

3.3 CGC on SB (CGC⇒SB) Scheduling

This scheduler is useful in algorithms that fork parallel tasks recursively when there is a large number
of parallel tasks created at forks. It can also be used when there is need to generate a sufficient
number of tasks through forking at a task τ anchored at a given cache λ before assigning them to
caches at the next lower level in λ’s shadow in order to exploit the parallelism fully. Informally under
CGC⇒SB, a collection of subtasks forked from τ are distributed evenly across caches at a suitable
lower level where the cache size is sufficiently large to accommodate each subtask’s space bound and
at the same time, the parallelism is fully exploited. We now specify the mechanism of this scheduler.

Let τ be a task anchored at a level k cache λ that recursively spawns parallel tasks, and consider
the first level of recursion when m ≥ pk subtasks are generated. We assume that all generated
subtasks have the same space bound σ, to within a constant factor. The CGC⇒SB scheduler finds
the smallest level i with Ci ≥ σ, and the smallest level j such that there are no more than m level j
caches under the shadow of λ. Then it uses CGC to distribute the subtasks evenly across the caches
in level max (i, j) under the shadow of λ.

Multiple tasks can be anchored at λ for simultaneous execution provided the total space needed
by all such tasks is upper bounded by Ci. When this happens, each is given a proportionate number
of cores. In our applications, all such (active) tasks are of the same size, to within a constant factor.

Fast Fourier Transform (FFT). The discrete Fourier transform (DFT) of a vector X of n complex
numbers is given by another complex vector Y of the same length, where Y [i] =

∑
0≤j<n X[j + 1] · ω−ij

n

for 1 ≤ i ≤ n, and ωn = e2π
√
−1/n [19]. In Figure 5, we present MO-FFT, the well-known six-step

variant [3, 33] of the Cooley-Tookey FFT algorithm [18] modified for efficient multicore-oblivious ex-
ecution, and obtained by exposing the parallelism in the cache-oblivious FFT algorithm in [20]. For
simplicity of exposition we assume that n is a power of 2. The algorithm is recursive, and uses the
multicore-oblivious matrix transposition algorithm MO-MT as a subroutine. For some factorization
n1×n2 of n, the six-step algorithm first computes n2 transforms of size n1 recursively, then multiplies
the results by twiddle factors [19], followed by the recursive computation of n1 transforms of size n2

each. Matrix transposition is used to put the inputs to the recursive calls in correct contiguous loca-
tions. In order to use MO-MT which transposes square matrices, the n1×n2 matrix initially created
from the input vector is transformed into a square matrix by padding it with dummy values. We use
two types of scheduling in MO-FFT: CGC and CGC⇒SB.

MO-FFT(X, n)
Input: A vector X of length n = 2k for some integer k.
Output: In-place FFT of X in X.
Space Bound: S(n) = 3n.
1: if n is a small constant then compute FFT using the direct formula and return end if
2: Let n1 = 2d

k
2 e and n2 = 2b

k
2 c (observe that n2 ≤ n1 ≤ 2n2).

In the following, let A be an n1 × n1 matrix stored in row-major order.
[CGC] pfor 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 do A[i, j] := X[(i− 1) · n2 + j] end pfor

3: [CGC] MO-MT(A, n1)
4: [CGC⇒SB] pfor 1 ≤ i ≤ n2 do MO-FFT(A[i, 1 . . . n1], n1) end pfor
5: [CGC] Multiply each of the first n entries of A by the appropriate twiddle factor [19]
6: [CGC] MO-MT(A, n1)
7: [CGC⇒SB] pfor 1 ≤ i ≤ n1 do MO-FFT(A[i, 1 . . . n2], n2) end pfor
8: [CGC] MO-MT(A, n1)
9: [CGC] Copy the first n entries of A into X

Fig. 5. MO-FFT: multicore-oblivious in-place FFT.

11

Theorem 4. When executed on a h-level HM model with p cores, MO-FFT on an input of size n ≥
Ch−1 terminates in Tp(n) = O ((1 + n/p) log n) parallel steps, and incurs Qi(n) = O

(
(n/ (qiBi)) logCi

n
)

cache misses at each of the qi caches in level i of the hierarchy, provided Ci = Ω
(
B2

i

)
(i.e., tall cache).

Proof. Since the CGC computations in lines 2, 3, 5, 6, 8 and 9 all have constant critical path length,
the critical pathlength of MO-FFT is T∞(n) = T∞(n1) + T∞(n2) + Θ (1) = O (log n). Hence, the
number of parallel steps using p processors Tp(n) = T1(n)

p + T∞(n) = O ((1 + n/p) log n) provided a
core is not left idling when parallel tasks are available. Since CGC⇒SB executes all taskes anchored at
the caches even when there are multiple tasks anchored at a given cache, the number of parallel steps
in this computation remains Tp(n) provided Ci ≥ p′iB1, for each cache level i, since this condition
would ensure that each core gets at least one block in the CGC computations at each recursive step
on the tasks anchored at caches.

We need to analyze the effect of this scheduling on the cache complexity of at every cache level.
For this, consider a level i cache λi. Observe that cache-misses according to CGC are incurred in
steps 2, 3, 5, 6, 8 and 9, while steps 4 and 7 call MO-FFT recursively with smaller inputs. Starting
with an input of size n, logCi

n levels of recursion are needed until the input becomes small enough
to fit into λi. At each of these levels O ((n/ (qiBi))) cache-misses are incurred by the algorithm at λi,
and no additional cache-misses are incurred once the data fits into the cache. Thus the total number
of cache-misses at λi is Qi(n) = O

(
(n/ (qiBi)) logCi

n
)
. ut

Sorting. A multicore oblivious algorithm for sorting on the simple multicore model with just private
caches is presented in [15]. This algorithm, Sample Partition Merge Sort (SPMS), runs in O(n log n)
sequential time and O((n/B) logC n) sequential cache misses (assuming a tall cache of size C with
block size B) on an input of length n. It is also shown in [15] that the algorithm has critical pathlength
O(log n log log n) and can be scheduled optimally on private caches. The space bound is linear in the
size of the input, and of each generated task.

The algorithm SPMS has exactly the same structure as the FFT algorithm given above, except
that the CGC steps, which in our FFT algorithm use MO-MT and other constant parallel time
computations, instead consist of a constant number of applications of prefix sums and other balanced
parallel computations (‘BP’ computations) that can be scheduled under CGC. Thus a CGC step on
a task of size n in the sorting algorithm has O(log n) critical pathlength. The algorithm SPMS uses
these BP computations to decompose an original problem of size n into collection of independent
subproblems, each of size at most

√
n. The overall problem of size n is solved by a sequence of two

recursive calls to subproblems of size at most
√

n. Althougth individual subproblems may vary in
size, there is a balanced task scheduler that ensures the generation of parallel tasks that are within a
constant factor of one another in size. Thus the structure of this computation is exactly the same as
that for FFT, hence the results for FFT under our scheduler translate to this sorting algorithm with
the same scheduler. The parallel time increases from O(log n) to O(log n log log n) due to the use of
prefix sums CGC computations (which has log n critical pathlength) instead of the constant depth
MO-MT used in FFT. This gives us the following result.

Theorem 5. Consider the SPMS algorithm executed on an an input of size n ≥ Ch−1 on an h-
level HM model with p cores, using CGC scheduler hints for prefix sums and BP computations, and
CGC⇒SB hints as in FFT. Then, SPMS terminates in Tp(n) = O ((1 + n/p log log n) log n log log n)
parallel steps, and incurs Qi(n) = O

(
(n/ (qiBi)) logCi

n
)

cache misses at each of the qi caches in
level i of the hierarchy, provided Ci = Ω

(
B2

i

)
(i.e., tall cache).

Finally, we note that if the sorting algorithm is executed on a smaller input size m ≤ qi ·Ci, then
the cache complexity at a level i cache is O

(
(m/ (qiBi)) logri

m
)
, where ri = min{Ci,m/qi}. This

fact will be used in the MO list ranking algorithm in Section 7.

12

Sparse Matrix Dense Vector Multiplication (SpM-DV). We show that when executed under
the CGC⇒SB scheduler on the HM model, the separator-based sparse matrix dense vector multipli-
cation algorithm given in [8] (see Figure 6) shows good cache performance, provided the matrix has
a support graph ([8], and also see below) with good separators. Let S be a class of graphs closed
under the subgraph relation. Then S is said to satisfy a f(n)-edge separator theorem if there exist
constants α ∈ [12 , 1) and β > 0 such that every graph G = (V,E) ∈ S with |V | = n can be parti-
tioned into two subgraphs G1 = (V1, E1) and G2 = (V2, E2) with |V1|, |V2| ≤ αn, V1 ∩ V2 = ∅, and
|{(u, v) ∈ E|(u ∈ V1 ∧ v ∈ V2) ∨ (u ∈ V2 ∧ v ∈ V1)}| ≤ βf(n) [28]. The support graph of an n × n
matrix A is defined to be the graph GA = (V,E) with V = {1, . . . , n} and E = {(i, j)|A[i, j] 6= 0}.
We say that A satisfies an f(n)-edge separator theorem if GA satisfies such a theorem.

As in [8], we assume that the rows and columns of matrix A are reordered based on the left to
right ordering of leaves in the separator tree TA of GA. The separator tree is constructed by applying
the separator theorem to the whole graph to get two components, and then recursively applying the
theorem to each component until only a single node remains at each leaf of the tree.

MO-SpM-DV((Av, A0), x; y; k1, k2)
Input: The inputs are a row-major representation (Av, A0) of a sparse n× n matrix A, and a vector x of length n. In
(Av, A0), Av is a vector of all non-zero elements A[i, j] of A sorted in lexicographically non-decreasing order of 〈i, j〉,
and each element A[i, j] is stored as an ordered pair 〈j, A[i, j]〉. Each entry A0[i] of vector A0 contains the starting
location of row i in Av with A0[n + 1] containing n + 1.
Output: A vector y of length n containing the product Ax.
Scheduler Hint: space-bound scheduling.
Space Bound: S(m) = 4m, where m = k2 − k1 + 1.
1: if k1 = k2 then
2: y[k1] := 0
3: for k := A0[k1] to A0[k1 + 1]− 1 do
4: 〈j, a〉 := Av[k]
5: y[k1] := y[k1] + a× x[j]
6: else
7: [CGC⇒SB] in parallel: MO-SpM-DV((Av, A0), x; y; k1, b k1+k2

2
c),

8: MO-SpM-DV((Av, A0), x; y; b k1+k2
2
c+ 1, k2)

Fig. 6. MO-SpM-DV: multicore-oblivious sparse matrix and dense vector multiplication.

Theorem 6. Any n × n sparse matrix A satisfying an nε-edge separator theorem with ε < 1 can be
reordered so that when executed on an h-level HM model with p cores MO-SpM-DV terminates in
T (n) = O (n/p) parallel steps, and incurs Qi(n) = O

(
(n/qi)

(
1/Bi + 1/C1−ε

i

))
cache misses at each

of the qi caches in level i of the hierarchy, provided n > Ch−1.

Proof. Sketch It is not difficult to see that under the CGC⇒SB scheduler each task anchored at C1 will
have space bound Ω (B1) (since n > Ch−1 ≥ p ·C1 ≥ p ·B1), and that Θ (n/(qiCi)) migrated tasks will
be anchored at each level i cache λ. Recall that λ will meet the space requirement of each such migrated
task τ , but will be too small for the parent of τ . Once τ is anchored at λ all its descendant subtasks
will be executed completey under the shadow of λ. Hence, the total number of cache misses incurred
at λ will be the sum of the cache misses incurred by these migrated tasks at λ. Since the space bound
of τ is s(τ) = 4m, where m is the length of the segment of y computed by τ , clearly, Ci/8 < m < Ci/4.
Let the starting and the ending index of y assigned to τ be k1 and k2, respectively. Now if we load a
segment of x of length 2m centered at index (k1 + k2)/2, then for each index j ∈ [k1, k2], the entire
subtree Tj of TA with leaves spanning indices [j−m/2, j+m/2] will be in λ. When the algorithm is at
row k consider a non-zero element A[k, j] causing a read of x[j] which corresponds to an edge (k, j) in

13

GA. If j is within Tj , then x[j] is a cache hit, otherwise it may incure a cache miss. However, according
to the edge seperator theorem, only O (mε) such misses can occur. Observe that O (m/Bi) additional
cache misses will be incurred for loading y, Av, Ao, and x [(k1 + k2)/2−m, . . . , (k1 + k2)/2 + m]
into λ. Hence, τ will incur O (m/Bi + mε) = O (Ci/Bi + Ci

ε) cache misses. Therefore, Qi(n) =
O (n/(qiCi) · (Ci/Bi + Ci

ε)) = O
(
(n/qi) ·

(
1/Bi + 1/C1−ε

i

))
.

Since the scheduler distributes the tasks across cores evenly, and each row of A has at most
a constant number of non-zero entries, the O (n/p) parallel running time of the algorithm follows
immediately. ut

4 Review of the Network-Obliviousness

A network-oblivious algorithm [7] is an algorithm designed for a network of processing elements
(PEs) that refers to no parameters of the machine such as number of processors or the interconnection
network parameters. A NO algorithmA is specified for the M(N) model, where N is a suitable function
of the input size and represents the maximum number of processors for which the computation is
designed. An M(N) is a complete network of N PEs PE0, · · ·PEN−1, each consisting of a CPU and
an unbounded local memory. A consists of a sequence of labeled supersteps: in an i-superstep, for
0 ≤ i < log N , a PEj can perform operations on locally held data and send words of data to PEs whose
numbers share the most significant i bits with j. A superstep ends with a global synchronization.

The communication complexity of A is defined on the M(p, B), for 1 ≤ p ≤ N . The M(p, B) is
an M(p) whose PEs are called processors and where messages exchanged between two processors in a
superstep can be envisioned as traveling within blocks of fixed size B (in words). The block-degree of a
superstep is defined as the maximum number of blocks sent/received by a processor. For an M(p, B)
algorithm, we define the communication complexity as the sum of the block-degrees of its supersteps,
and the computation complexity as the sum over all supersteps of the maximum number of operations
performed by a processor in each superstep. A NO algorithm can be naturally executed on M(p, B)
for every 1 ≤ p ≤ N and B by stipulating that the j-th processor carries out the operations of
PE(N/p)j , · · · , PE(N/p)(j+1)−1: supersteps with label i < log p on M(N) become supersteps with the
same label on M(p, B), local computation otherwise.

In [7] it is shown that in many cases, network-oblivious algorithms which have optimal com-
munication complexities on M(p, B) exhibit optimal communication time (see below) on a variant
of the Decomposable-BSP model [5, 31], denoted as D-BSP(P, g,B) where g = (g0, · · · glog P−1) and
B = (B0, · · ·Blog P−1). A D-BSP(P, g,B) is essentially an M(P, ·) machine where the communica-
tion time of an i-superstep is defined to be h(P,Bi)gi, where h(P,Bi) denotes its block-degree on
M(P,Bi). The communication time of a D-BSP algorithm is the sum of the communication times of
its supersteps.

4.1 Some Network-Oblivious Algorithms

Prefix Sum Computation A network-oblivious algorithm, named NO-PS, for M(n) which com-
putes the prefix sums of a sequence of n elements (x0, . . . xn−1) on which it is defined a binary
associative operation ∗ is described in [6]. We report it for reader convenience. For simplicity, we
suppose the existence of the identity 1 of operation ∗: the algorithm can be easily generalized by
using a special symbol to the case identity does not exist. The algorithm is a simple adaptation of the
PRAM algorithm in [25] to the network-oblivious framework which exploits superstep labels. NO-PS
uses two support structures b(i, j) and c(i, j), where 0 ≤ i ≤ log n and 0 ≤ j < n/2i. At the end of
the algorithm, the j-th prefix sum x0 ∗ . . . ∗ xj will be in c(0, j).

14

Data are evenly distributed among PEs as follows: xj , b(0, j) and c(0, j), for each 0 ≤ j < n, are
in PEj , while b(i, j) and c(i, j), for 0 < i ≤ log n and 0 ≤ j < n/2i, in PEΛ(i,j), where Λ(i, j) =
j2i + 2i−1 − 1. It is not difficult to see that each PE contains only one entry of b(i, j) and c(i, j)
with i > 0. Indeed, suppose a PE contains b(i, j) and b(̃i, j̃) (i.e., Λ(i, j) = Λ(̃i, j̃)), with i, ĩ > 0 and
(i, j) 6= (̃i, j̃): if i = ĩ, it follows that j = j̃; on the other hand, if i < ĩ (the case i > ĩ is symmetric),
the i-th less significant bits of Λ(i, j) + 1 and Λ̃(̃i, j̃) + 1 differ unless i = ĩ, which is contradiction.
In the same way it can be proved that each PE contains only one entry of c(i, j) with i > 0. The
pseudocode of NO-PS is given in Fig. 7.

NO-PS(x0, . . . xn−1)

Input: n elements x0, . . . xn−1

Output: The prefix sums of the elements.
1: Each PEj sets b(0, j) to xj , for 0 ≤ j < log n.
2: for i = 1 to log n do
3: PEΛ(i,j) requires b(i− 1, 2j) b(i− 1, 2j + 1) and sets b(i, j)← b(i− 1, 2j) ∗ b(i− 1, 2j + 1), for 0 ≤ j < n/2i.
4: PEΛ(0,log n) set c(0, log n) to 1.
5: for i = log n− 1 down to 0 do
6: PEΛ(i,j) requires c(i + 1, bj/2c) and b(i, j − 1) and computes, for 0 ≤ j < n/2i:

c(i, j) =

�
c(i + 1, j/2) if j even
c(i + 1, (j − 1)/2) ∗ b(i, j − 1) if j odd

7: Each PEj sets c(0, j) to c(0, j) ∗ xj , for 0 ≤ j < log n.

Fig. 7. Network-oblivious algorithm for computing the prefix sums of n elements.

The correctness of the algorithm follows by proving inductively that b(i, j) and c(i, j) contain
x2ij ∗ . . . ∗ x2i(j+1)−1 and x0 ∗ . . . ∗ x2ij−1 (or the identity if j = 0), respectively. We observe that, in
the i-th iteration, for 1 ≤ i ≤ log n, of the first for loop, PEj2i+2i−1−1, which contains b(i, j), receives
b(i− 1, 2j) from PEj2i+2i−2−1 (from PE2j if i = 1) and b(i− 1, 2j +1) from PEj2i+2i−1+2i−2−1 (from
PE2j+1 if i = 1): hence, PEs perform a (log n − i)-superstep since PEs’ indexes differ on the first i
less significant bits. In the same fashion, it can be proved that in the i-th iteration of the second for
loop, PEs perform a (log n− i− 1)-superstep.

Theorem 7. The network-oblivious algorithm NO-PS with input size n exhibits the following com-
munication HNO-PS(n, p,B) and computation TNO-PS(n, p) complexities4 when executed on M(p, B),
for p ≤ n:

HNO-PS(n, p,B) = Θ (log p) , TNO-PS(n, p) = O
(

n

p
log n

)
. (1)

The communication complexity is optimal.

Proof. There are 2 i-supersteps for each 0 ≤ i < log n, and in each one 2i PEs (call them active PEs),
evenly distributed among the PEs, sends/receives O (1) messages and performs O (1) operations. On
M(p, B), supersteps whose labels are bigger than or equal to log p become local computation. On
the other hand, in supersteps whose label is smaller than log p, each processor sends/receives O (1)
messages since it simulates O (1) active PEs. Therefore, the communication complexity is Θ (log p),
which is optimal for [22]. Since in each superstep (even those whose labels are bigger than or equal
to log p) a processor simulates the n/p assigned PEs, the computation complexity is O

(
n
p log n

)
. ut

4 Observe that the computation complexity of a network-oblivious algorithm is independent of the block communica-
tion size B, while this is not the case in general of the communication complexity.

15

NO-PS can be easily extended to compute prefix sums of n elements on f(n) PEs, where f(n) ≤ n.
Each PE, which contains n/f(n) adjacent elements, computes the sums of local data reducing the
problem to a prefix sum computation of f(n) elements; then the previous algorithm is adopted.
Clearly, such an algorithm can be performed on M(p, B) for p ≤ f(n). In the following sections we
refer to this extension, whose complexities are stated in the following corollary.

Corollary 1. The computation of prefix sums of n elements on M(f(n)) PEs exhibits the follow-
ing communication HNO-PS(n, p,B) and computation TNO-PS(n, p) complexities when executed on
M(p, B), for p ≤ f(n):

HNO-PS(n, p,B) = Θ (log p) , TNO-PS(n, p) = O
(

n

p
+

f(n)
p

log n

)
. (2)

The algorithm exhibits optimal communication and computation complexities when f(n) ≤ n/ log n.

The communication time of NO-PS on a D-BSP machine is provided by the subsequent theorem.

Lemma 1. The network-oblivious algorithm NO-PS with input size n exhibits the following commu-
nication time DNO-PS(n, P, g,B) when executed on a D-BSP(P, g,B) machine, for P ≤ n:

DNO-PS(n, P, g,B) = O

(
log P−1∑

i=0

gi

)
. (3)

The communication time is optimal when gi = Θ
(
g0/ci

)
, where c is an arbitrary constant and c > 1.

Proof. The proof is equivalent to the previous one: since there are 2 i-supersteps for each 0 ≤ i < log P
and in each one a processor of the D-BSP machine sends/receives O (1) messages, the theorem follows.

ut

Sorting The network-oblivious algorithm for sorting n elements described in [7] is based on Column-
Sort [27] and defined for an M(n) machine. However, its communication complexity is optimal on an
M(p, B) with B ≤

√
n/p and p ≤ n1−ε for any constant 0 < ε < 1, and its computation complexity

suboptimal by a factor O
(
(log n)log3/2 6

)
.

By reducing the maximum parallelism of the algorithm, that is, designing the algorithm on an
M(n1−(2/3)κ

) machine for an arbitrary constant κ ≥ 1, we yield communication and computation op-
timality on M(p, B) for any p ≤ n1−(2/3)κ and suitable values of B. This network-oblivious algorithm,
named NO-CS, is defined as in [7] but, when the subproblem size is n(2/3)κ , the recursion ends and
each subproblem is solved sequentially by an optimal work algorithm (e.g., mergesort).

Theorem 8. The network-oblivious sorting algorithm NO-CS with input size n exhibits the follow-
ing communication HNO-CS(n, p,B) and computation TNO-CS(n, p) complexities5 when executed on
M(p, B) with p ≤ n1−(2/3)κ :

HNO-CS(n, p,B) = O
(

4κ

(
n

Bp
+
√

n

p

))
, TNO-CS(n, p) = Θ

(
6κ n

p
log n

)
.

Since κ is a constant, both complexities are optimal when B = O
(√

n/p
)
.

5 With abuse of notation we keep the constant κ in the asymptotical notation.

16

Proof. The algorithm consists of four rounds in which n1/3 subproblems of size n2/3 are solved in
parallel. In each recursive call the algorithm performs a transposition which can be performed through
an adaptation of the network-oblivious algorithm proposed in [7] which requires O

(
n/(Bp) +

√
n/p

)
communications and O (n/p) operations. The communication complexity is given by the following
recursion:

HNO-CS(n, p,B) ≤

{
4H
(
n2/3, p/n1/3, B

)
+O

(
n/(Bp) +

√
n/p

)
if p > 1

0 if p ≤ 1

which gives HNO-CS(n, p,B) = O
((

n/(Bp) +
√

n/p
)

(log n/ log(1 + n/p))log3/2 4
)
. Since p ≤ n1−(2/3)κ

the first equation follows. When we consider the computation complexity, the recurrence terminates
when the input size is n0 = n(2/3)κ (here n denotes the initial input size) and the complexity is upper
bounded by the following recurrence:

T (n, p) ≤

4T
(
n2/3, p/n1/3

)
+O (n/p) if p > 1

4n1/3T
(
n2/3, 1

)
+O (n) if n > n0 and p > 1

O (n log n) if n ≤ n0 and p ≤ 1

from which we get T (n, p) = O
(
(n/p) log n

(
log n/ log(1 + n(2/3)κ

)
)log3/2 6

)
from which follows the

equation in the statement. ut

We observe that in the previous theorem communication and computation complexities depend on
κ (which is negligible in the asymptotical notation), but the bound on the communication block size
B is independent of κ. The following lemma shows that NO-CS yields optimal performance also in a
D-BSP machine.

Lemma 2. The network-oblivious sorting algorithm NO-CS with input size n exhibits optimal com-
munication time DNO-CS(n, P, g,B) on a D-BSP(P, g,B), for P ≤ n1−(2/3)κ and B0 = O

(√
n/P

)
,

and

DNO-CS(n, P, g,B) = Θ

(
n

B0P
g0

)
.

Proof. The communication time can be straightforwardly derived. Since in the worst case Θ (n/P)
elements must be exchanged between the first and the second halves of the P processors, the optimality
follows. ut

Since NO-CS is parametric in the constant κ, we have the following corollary. In the following
sections, we then suppose NO-CS to be defined on M(n1−ε), for any constant ε ∈ (0, 1).

Corollary 2. There exists an optimal sorting algorithm defined on M(n1−ε), where ε is an arbitrary
constant in (0, 1) which exhibits O

(
n/(Bp) +

√
n/p

)
communication complexity and O ((n/p) log n)

computation complexity on any M(p, B) for p ≤ n1−ε; the communication complexity is optimal when
B ≤

√
n/p.

Furthermore, the algorithm yields optimal O (ng0/B0P) communication time on any D-BSP(P, g,B),
for P ≤ n1−ε and B0 = O

(√
n/P

)
.

Proof. The corollary follows by setting κ = blog2/3 εc. ut

17

Input: n × n matrix x, function f : S × S × S × S → S, set Σf of triplets 〈i, j, k〉, with i, j, k ∈ [0, n).
Output: transformation of x defined by f and Σf .
1: for k ← 0 to n− 1 do
2: for i← 0 to n− 1 do
3: for j ← 0 to n− 1 do
4: if 〈i, j, k〉 ∈ Σf then x[i, j]← f(x[i, j], x[i, k], x[k, j], x[k, k]);

Fig. 8. Gaussian Elimination Paradigm (GEP).

5 Gaussian Elimination Paradigm

Let x be an n×n matrix with entries from an arbitrary domain S, and let f : S ×S ×S ×S → S
be an arbitrary function. For simplicity, we assume n to be a power of two. By Gaussian Elimination
Paradigm (GEP), introduced in [12], we refer to the computation in Fig. 8, where the algorithm
modifies x by applying a given set of updates, denoted by 〈i, j, k〉 for i, j, k ∈ [0, n), of the form x[i, j]←
f(x[i, j], x[i, k], x[k, j], x[k, k]). We let Σf denote the set of such updates that the algorithm needs to
perform, and suppose that the inclusion check in Line 5 and function f are computed in constant
time. Many problems can be solved using a GEP computation, including Floyd-Warshall’s all-pairs
shortest paths, Gaussian Elimination and LU decomposition without pivoting, matrix multiplication.

A cache-oblivious recursive implementation of the GEP paradigm, called I-GEP, was presented in
[12] and parallelized in [13] for multicore models with one level of caches. Specifically, I-GEP consists
of four recursive functions A, B, C and D: each one accepts four matrices X ≡ x[I, J], U ≡ x[I,K],
V ≡ x[K, J] and W ≡ x[K, K], where I, J, K denote suitable intervals in [0, n), and performs updates
in Σf ∩ (I×J×K) through eight recursive calls to A, B, C and D. The functions differ in the amount
of overlap X, U , V and W have among them: A is invoked when I ≡ J ≡ K, B when I ∩ J = ∅
and I ≡ K, C when I ∩ J = ∅ and J ≡ K, D when I, J and K do not overlap. I-GEP incurs
O
(
n3/
(
B
√

M
))

misses and requires O
(
n3/p + n log2 n

)
parallel time. In [12], it is proved that I-

GEP produces the correct output under certain conditions which are met by all notable instances
mentioned above. Also presented in [13] is C-GEP which extends I-GEP and implements correctly
any instance of GEP with no degradation in performance. Tiled I-GEP [14] runs in O(n3/p+n) time
without increasing the cache complexity on HM (Section 2) but is not multicore-oblivious.

In the following sections we describe multicore and network-oblivious algorithms for GEP which
are based on I-GEP. The network-oblivious algorithm, named N-GEP, is somewhat modified from its
multicore counterpart due to the different models in which algorithms are specified: a shared-memory
model for the multicore-oblivious algorithm, a distributed-memory model for the network-oblivious
one. To prove the correctness of N-GEP we will later introduce the notion of commutative GEP
computation.

6 Multicore-Oblivious I-GEP

In this section we analyze a multicore-oblivious version of I-GEP based on our parallel I-GEP im-
plementation given in [13]. As already mentioned in Section 8, I-GEP is an in-place cache-oblivious
implementation of GEP, and consists of four recursive functions A, B, C and D. The initial call is
made to function A. Each function makes eight recursive function calls on inputs of size n

2 ×
n
2 , where

n×n is the size of the input matrix passed to it. The functions differ in the order the eight recursive
calls are made, and also in the amount of parallelism they expose. Function A exposes the least
amount of parallelism while D exposes the most.

18

Theorem 9. When executed under the SB scheduler, I-GEP on an n× n input, n2 ≥ Ch−1, incurs
Qi(n) = O

(
n3/
(
qiBi

√
Ci

))
cache misses at each level i cache, and terminates in T (n) = O

(
n3/p

)
parallel time, provided Ci = Ω

(
B2

i

)
for all i ∈ [1, h−1], and Ci > ci·pi·Ci−1 with ci = 2 log2 (Ci/Ci−1)

holds for i ∈ [2, h− 1].

Proof. (Sketch) Observe that I-GEP does not access any data item outside recursive function calls
corresponding to inputs of size 1× 1. Therefore, it suffices to compute the cache-misses incurred only
by tasks with space bound smaller than the largest cache size, i.e., Ch−1. The SB scheduler ensures
that once a task τ fits into an Li cache λ and starts executing, all subtasks generated by τ and its
descendants will be executed entirely by the cores under shadow(λ) without any interference from
tasks generated outside shadow(λ). Observe that each subtask generated by τ has space bound s(τ)/4,
and since pi ≥ 2⇒ Ci > ci ·pi ·Ci−1 > 4Ci−1 for i ∈ [2, h−1], each migrated task anchored at Ci−1 will
have space bound larger than Ci−1/4, and each migrated task anchored at C1 will have space bound
Ω
(
B2

1

)
. There are only Θ

(
n/
√

Ci

)
, Θ

(
n2/Ci − n/

√
Ci

)
and Θ

(
n3/
(
Ci

√
Ci

)
− 2 · n2/Ci + n/

√
Ci

)
migrated tasks with space bound Θ (Ci) corresponding to I-GEP function A, B/C and D, respectively.
Observing that when executed entirely under λ any such task will incurO

(√
Ci + Ci/Bi

)
cache-misses

in λ (for reading the input into λ and writing the output to the next higher level cache), the claimed
bound follows.

We will compute the parallel running time inductively. Let T i(s) be an upper bound on the
parallel running time of any I-GEP function with space bound s executed on any Li cache. Clearly,
when anchored at any L1 cache and thus executed by a single core, for any task τ1 with space bound
Θ (C1), T 1(C1) = O

(
C

3/2
1

)
= O

(
C

3/2
1 /p′1

)
(since p′1 = 1). Hence as inductive hypothesis let us

assume that T i−1(Ci−1) = O
(
C

3/2
i−1/p′i−1

)
holds for some i − 1 ≥ 1 (recall that p′i−1 is the number

of cores subtended by any level i − 1 cache). Now consider any task τi with space bound Θ (Ci)
anchored at any level i cache λi. Following the recurrence relations given in [13] for computing the
critical path lengths of I-GEP functions in its computational DAG, one can verify that the critical
path length of τi is O

(√
Ci/Ci−1 log2

√
Ci/Ci−1 · T i−1(Ci−1)

)
, and thus using Brent’s principle,

T i(Ci) = O
((

(Ci/Ci−1)
3/2/pi +

√
Ci/Ci−1 log2

√
Ci/Ci−1

)
· T i−1(Ci−1)

)
. Since Ci > ci · pi · Ci−1

and ci = 2 log2 (Ci/Ci−1), the first term in T i(Ci) dominates the second term, and thus T i(Ci) =
O
(
C

3/2
i /

(
pip
′
i−1

))
= O

(
C

3/2
i /p′i

)
. Hence, extending the induction up to level h − 1, we obtain,

T h−1(Ch−1) = O
(
C

3/2
h−1/p′h−1

)
= O

(
C

3/2
h−1/p

)
, and since there are O

((
n/
√

Ch−1

)3) I-GEP func-

tions with space bound Θ (Ch−1), we conclude that T (n) = O
((

n/
√

Ch−1

)3 · C3/2
h−1/p

)
= O

(
n3/p

)
.
ut

6.1 N-GEP: a Network-Oblivious Algorithm for GEP

We propose N-GEP, an optimal NO algorithm which performs correctly any commutative GEP
computation which is correctly solved by I-GEP. It exhibits space optimality, which is not yielded by
a straightforward NO implementation of I-GEP, and is optimal also on the D-BSP for a wide range
of machine parameters.

We now formally define a commutative GEP computation. A GEP computation is commu-
tative if its function f satisfies the following property for each y, u1, v1, w1, u2, v2, w2 in S:
f(f(y, u1, v1, w1), u2, v2, w2) = f(f(y, u2, v2, w2), u1, v1, w1). Not all GEP computations are commu-
tative, however all of the instances of GEP for the aforementioned notable problems can be easily
seen to be commutative. We will use this notion to prove the correctness of N-GEP, the NO algorithm
we present for these applications of GEP.

19

N-GEP is built on the parallel implementation of I-GEP in [13], from which it inherits the recursive
structure, and is designed for M(n2/ log2 n). (The number of PEs reflects the critical pathlength of I-
GEP.) N-GEP consists of four functions A, B, C and D∗: the first three functions, whose pseudocode
is given in Appendix 1, are suitable adaptations of their counterparts in I-GEP; in contrast, D∗,
described in Fig. 9, is based on I-GEP’s D but solves subproblems in a different order and is equiv-
alent to D for commutative GEP computations. The differences between N-GEP and I-GEP are a
consequence of the different models where algorithms are designed: I-GEP is built on a CREW shared-
memory model, while N-GEP is defined in a distributed-memory model where PEs communicate in
a point-to-point fashion.

D∗(X, U, V, W, m,P)
Input: m ×m matrices X ≡ x[I, J], U ≡ x[I, K], V ≡ x[K, J] and W ≡ x[K, K], with I, J, K intervals in [0, n);
set P of consecutive numbered PEs assigned to the current instance of D∗.
Output: execution of all updates 〈i, j, k〉 ∈ T , with T = Σf ∩ (I × J ×K).
1: if T = ∅ then return; if m = 1 or |P| = 1 then solve the problem sequentially with I-GEP and return;
2: Let Pi,j , with 0 ≤ i, j ≤ 1, be a partition of P where each set contains |P|/4 consecutive numbered PEs;
3: W0,1 ←W1,1, W1,0 ←W0,0; sync; {The assignment is achieved by a suitable communication among PEs}
4: Permute entries of X, U , V and W in such a way each quadrant will be allocated in row-major in a Pi,j ,

according with the following recursive calls; sync;
5: in parallel: D∗(X0,0, U0,0, V0,0, W0,0, m/2,P0,0), D∗(X0,1, U0,1, V1,1, W0,1, m/2,P0,1),

D∗(X1,0, U1,1, V1,0, W1,1, m/2,P1,0), D∗(X1,1, U1,0, V0,1, W1,0, m/2,P1,1);
6: As Line 6.1.
7: in parallel: D∗(X0,0, U0,1, V1,0, W1,1, m/2,P0,0), D∗(X0,1, U0,0, V0,1, W1,0, m/2,P0,1),

D∗(X1,0, U1,0, V0,0, W0,0, m/2,P1,0), D∗(X1,1, U1,1, V1,1, W0,1, m/2,P1,1);
8: Re-establish the initial layout; sync;

Fig. 9. N-GEP’s function D∗. The underlined recursive calls are inverted in I-GEP’s D. The construct sync indicates
the synchronization at the end of a superstep (superstep labels are not reported for simplicity).

We denote by n and m the initial input size and the input size of a generic recursive level,
respectively. Each function receives as inputs at most four m×m matrices (i.e., X, U , V and W)6 and
the set P containing the q = |P| consecutive numbered PEs assigned to the function. We assume each
of the four input matrices to be distributed according with a row-major layout among min{q, m2}
PEs, evenly chosen from P. The initial call is A(x, n,P), where x is the n × n input matrix and
P = {PE0, . . . PEn2/ log2 n−1}.

When m = 1 or q = 1, each function solves the problem sequentially through I-GEP. When m > 1
and q > 1, each input matrix is split into four m/2 ×m/2 quadrants as in I-GEP, and then eight
subproblems are solved recursively through calls to A, B, C and D∗: subproblems in A, B and C
are solved in the same order as in I-GEP; in contrast, the order in which subproblems are solved in
D∗ differs from the one used in I-GEP’s D. In general, D∗ is not equivalent to I-GEP’s D, but it
guarantees a constant memory blow-up, which would not be obtained by a simple adaptation of D to
the network-oblivious framework. Each subproblem is solved recursively by q/k consecutive numbered
PEs of P, where k, with k ∈ {1, 2, 4}, denotes the number of subproblems which are solved in parallel.
Note that the way PEs are assigned does not guarantee the number q of assigned PEs to be small
than the number m2 of entries in a matrix. In functions A, B and C, inputs to the eight subproblems
are stored in new matrices of size m/2×m/2 suitably allocated among PEs in P: hence, O

(
dm2/qe

)
new space per PE is allocated in each invocation. In D∗ no new space per PE is required.

6 Differently from I-GEP, function A receives only X since U , V and W completely overlap with it, and function B
(resp., C) receives X and U (resp., X and V) since V and W (resp., U and W) overlap with them, respectively.

20

Theorem 10. The NO algorithm N-GEP performs correctly any commutative GEP computation
which is correctly solved by I-GEP, and each PE exhibits a constant memory blow-up.

Proof. When a GEP computation is commutative, updates in I-GEP’s D can be performed in any
order since U , V and W are fixed in D. Then, it can be proved by induction that N-GEP’s D∗
is equivalent to I-GEP’s D. As a consequence, A, B and C are also equivalent to their respective
implementations in I-GEP. The first part of the theorem follows. Function D∗ does not require
additional space since no new matrices are allocated, and the amount of additional space required by
A, B and C decreases geometrically in each recursive level and is asymptotically negligible. ut

We remark that if function D∗ is replaced by a NO implementation of I-GEP’s D, then N-GEP
would perform correctly any GEP computation which is correctly solved by I-GEP, however, each
PE would exhibit a O (log n) memory blow-up. N-GEP can be extended to correctly implement any
commutative GEP computation, without performance degradation, by adopting the ideas in C-GEP.

The following theorem shows that N-GEP performs optimally on the M(p, B) for wide ranges of
the p and B parameters.

Theorem 11. A commutative GEP computation on an n × n matrix can be performed by N-GEP
on an M(p, B), for 1 < p ≤ n2/ log2 n and B ≥ 1, with communication HN−GEP(n, p,B) and optimal
computation TN−GEP(n, p) complexities, where:

HN−GEP(n, p,B) = O
(
n2/(B

√
p) + n log2 n

)
, TN−GEP(n, p) = Θ

(
n3/p

)
.

The communication complexity is optimal when 1 < p ≤ n2/ log4 n and B = O
(
n/(
√

p log2 n)
)
.

Proof. Consider the execution of D∗ with input size m and q assigned PEs. We denote with r, where
r ≤ q, the number of consecutive M(p, B) processors that simulate the q PEs, and with HD∗(m, r,B)
the communication complexity of D∗. HB(m, r,B) and HA(m, r,B) are similarly defined. We refer to
[29] for more details on the mathematical derivations of the following bounds.

When m ≤ 1 and r ≤ 1, that is, when D∗ is in a base case or is assigned to PEs simulated by the
same processor, there is no communication. Otherwise, each processor performs a constant number of
supersteps with block-degree O

(
dm2/(Br)e

)
. Hence, we have (observe that m2 can be either smaller

or bigger than r):

HD∗(m, r,B) =

{
2HD∗

(
m
2 , r

4 , B
)

+O
(⌈

m2

Br

⌉)
if m > 1 and r > 1

0 if m ≤ 1 or r ≤ 1

which yields HD∗(m, r,B) = O
(⌈

m2/(Br)
⌉
min {

√
r,m}

)
. In the same fashion, we obtain the com-

munication complexity of B:

HB(m, r,B) =

{
2HB

(
m
2 , r

2 , B
)

+ 2HD∗
(

m
2 , r

2 , B
)

+O
(⌈

m2

Br

⌉)
if m > 1 and r > 1

0 if m ≤ 1 or r ≤ 1

which yields after some mathematical derivations HB(m, r,B) = O
(
m2/(B

√
r) + m log m

)
. The

above upper bound applies to function C as well. Finally, we observe that the communication com-
plexity of A is dominated by the following recurrence:

HA(m, r,B) =

{
2HA

(
m
2 , r, B

)
+ 2HB

(
m
2 , r

2 , B
)

+ 2HD∗
(

m
2 , r

2 , B
)

+O
(⌈

m2

Br

⌉)
if m > 1

0 if m ≤ 1

21

from which we get HA(m, r,B) = O
(
m2/(B

√
r) + m log2 m

)
. Since HN−GEP(n, p,B) = HA(n, p,B),

the first equation in the theorem follows.
Let us denote with TD∗(m, q, r) the computation complexity of function D∗. TB(m, q, r) and

TA(m, q, r) are similarly defined. We remind that q is the number of PEs assigned to function D∗
and r is the number of M(p, B) processors that simulate the q PEs. Note that each PE performs
O
(
dm2/qe

)
operations on local data in each superstep, and therefore each M(p, B) processor performs

O
(
dm2/qe(q/r)

)
operations per superstep. The computation complexity of D∗ is upper bounded as

follows:

TD∗(m, q, r) =

2TD∗

(
m
2 , q

4 , r
4

)
+O

(⌈
m2

q

⌉
q
r

)
if m > 1 and r > 1

8TD∗
(

m
2 , q

4 , 1
)

+O
(⌈

m2

q

⌉
q
)

if m > 1, q > 1 and r ≤ 1
m3 if m ≤ 1 or q ≤ 1

which solves to TD∗(m, q, r) = O
(
(m3 + mq)/r

)
. The computation complexity of B is given by the

following relation:

TB(m, q, r) =

2TB

(
m
2 , q

2 , r
2

)
+ 2TD∗

(
m
2 , q

2 , r
2

)
+O

(⌈
m2

q

⌉
q
r

)
if m > 1 and r > 1

4TB
(

m
2 , q

2 , 1
)

+ 2TD∗
(

m
2 , q

2 , 1
)

+O
(⌈

m2

q

⌉
q
)

if m > 1, q > 1 and r ≤ 1
m3 if m ≤ 1 or q ≤ 1

Hence, TB(m, q, r) = O
(
(m3 + mq log m)/r

)
. Finally, the computation complexity of A is given by

the following relation:

TA(m, q, r) =

{
2TA

(
m
2 , q, r

)
+ 2TB

(
m
2 , q

2 , r
2

)
+ 2TD∗

(
m
2 , q, r

)
+O

(⌈
m2

q

⌉
q
r

)
if m > 1

O (1) if m ≤ 1

which gives TA(m, q, r) = O
(
(m3 + mq log2 m)/r

)
. Since TN−GEP(n, p) = TA(n, n2/ log2 n, p), the

theorem follows.
We now prove the optimality of N-GEP. Matrix multiplication with only semiring operations can

be computed by a commutative GEP computation. Hence, lower bounds on its communication and
computation complexities translate into worst-case lower bounds for an algorithm which performs any
commutative GEP computation. An algorithm for solving matrix multiplication on M(p, B) requires
Ω
(
n3/p

)
operations and Ω

(
n2/
(
B
√

p
))

communications per processor if each one uses Θ
(
n2/p

)
words [24]. It follows that N-GEP is optimal when p ≤ n2/ log4 n and B ≤ n/(

√
p log2 n), since each

PE uses O
(
log2 n

)
space and each processor simulates n2/(p log2 n) PEs. ut

The following lemma states that, under certain circumstances, N-GEP performs optimally also
on a D-BSP model. Note that N-GEP does not satisfy the assumptions required by Theorem 1 in
[7] for proving that an optimal NO algorithm translates into an optimal D-BSP algorithm, but its
optimality can be establish through a separate proof.

Corollary 3. A commutative GEP computation on an n× n matrix can be performed by N-GEP on
a D-BSP(P, g,B), for 1 < P ≤ n2/ log2 n, with communication time

DN−GEP(n, P, g,B) = O

(
log P−1∑

i=0

(
n22

i
2 /(BiP) + n log n

)
gi

)
,

which is optimal when P ≤ n/ log n and Bi = O
(
n2i/2/(P log n)

)
for each 0 ≤ i < log P .

22

Proof. The upper bound can be derived by recursive relations similar to ones in the proof of The-
orem 11, but different Bi’s and gi’s are used in each recursive level. Optimality descends from the
optimality in the D-BSP of the NO algorithm for matrix multiplication in [7], whose communication
time is O

(∑log P−1
i=0 n22

i
2 gi/(BiP)

)
. Again, we refer to [29] for more details on the mathematical

derivations. ut

7 List Ranking and Graph Algorithms

In this section, we present multicore and network-oblivious algorithms for list ranking, Euler tours
and some tree and graph problems.

We represent a linked list of n nodes as an array L where each position contains the identifier
(ID) of a node and pointers to its successor and predecessor, denoted by S(i) and P (i) respectively.
A linked list node does not typically contain pointers to predecessors, however they can be easily
derived by suitably sorting pointers to successors. We define the rank of a node to be its distance
from the end of the list. The list ranking problem consists in determining the ranks of every node
in a list. Additionally, there is a weighted version of this problem where each edge has an associated
weight and the rank of a node is defined to be the sum of the weights of all edges along the path from
that node to the last node.

Given a tree T rooted in r, we define an Euler tour of T to be a traversal of T which starts and
ends at r and visits every edge exactly twice, once in each direction. We assume a tree (and a graph
as well) to be represented by adjacency lists.

7.1 Multicore-Oblivious Algorithms

In this section, we present multicore-oblivious algorithms for a variety of graph problems. These
algorithms are based on a long series of earlier algorithms designed in the parallel, cache efficient, and
multicore contexts. Each section begins with a formal definition of the problem and a summary of
relevant prior work before detailing our novel results. In the analysis of all algorithms in this section,
every parallel step corresponds to either a sort of the data or a linear scan of disjoint units of data
bounded by the size of the initial input. The coarse grained contiguous scheduler described in Section
3 ensures that operations on disjoint units of data obtains the cache complexity of a linear scan at
each cache level. So the cache complexity at each level is dominated by the complexity of some number
of sorts. We will use the recently presented multicore-oblivious sorting algorithm of Ramachandran
et al. [15], which has time complexity O((n/p) log n + log n log log n) and level i cache complexity
O
(

n
qiBi

log n/ log(min(Ci, n/qi)))
)
.

List Ranking. Consider a linked list L of n nodes. Wyllie [34], using the pointer jumping tech-
nique, presented the first algorithm solving list ranking in parallel. However, this algorithm requires
O(n log n) work and so is not work-time optimal in light of the linear time sequential algorithm. Later
developments eventually culminated in a O(log n) time, linear work algorithm [17].

Later, these techniques were applied in the cache efficient context to develop algorithms for list
ranking with complexity matching that of the sorting lower bound, and eventually to the multicore
context. We now present our multicore oblivious algorithm for list ranking, called MO–LR, in Fig. 10.
Our algorithm employs the list contraction technique described in [17]. This technique solves the list
ranking problem by identifying an independent set of nodes, contracting these nodes out, recursively
solving this subproblem, and then extending the solution to the contracted nodes. To find an inde-
pendent set, we identify a ruling set using an algorithm presented by Arge et al [1]. Whenever the size

23

of the problem is at most some small constant, we solve the problem using the sequential algorithm.
We now present our algorithm more formally.

MO–LR(L)
Input: linked list L of n nodes specified by a successor array S, predecessor array P , and arc weights w.
Output: ranks R of each of the n nodes.
1: if n is a small constant then solve using the sequential algorithm and return endif
2: I := MO–IS(L)
3: [CGC⇒SB] sort a copy of S by successor index and then construct S2 (the successor of the successor)
4: [CGC] pfor 0 ≤ i ≤ n− 1 (contract out nodes of I:)
5: if S(i) ∈ I then S′(i) := S2(i), w′(i) := w(i) + w(S(i))
6: else if i /∈ I S′(i) := S(i), w′(i) := w(i)
7: end pfor
8: Let R′ := MO–LR(L′ = (S′, P ′, w′))
9: [CGC] pfor 0 ≤ i ≤ n− 1 (extend the solution to nodes of I:)

10: if i ∈ I R(i) = R′(S(i))− w(i)
11: else R(i) := R′(i)
12: [CGC] end pfor
13: return R

Fig. 10. Multicore-Oblivious List Ranking

We next present in Fig. 11 a multicore-oblivious algorithm, called MO–IS, which identifies an
independent set of nodes in a linked list. This algorithm is an adaptation of a recent algorithm
presented by Arge et al. [1].

MO–IS(L)
Input: linked list L of n nodes specified by a successor array S, predecessor array P , and arc weights w.
Output: an independent set I of at least n/3 nodes.
1: [CGC⇒SB] Identify a log log n coloring of the nodes.
2: [CGC⇒SB] Sort a copy of the nodes by successor (and predecessor) index to associate with each node the

color of its successor (and predecessor).
3: [CGC⇒SB] Sort the nodes by color.
4: for each color 0 ≤ j ≤ log log n− 1 do
5: [CGC⇒SB] sort nodes of color j by index
6: [CGC] identify duplicates by comparing indices of consecutive nodes
7: [CGC] remove duplicates and add remaining nodes to the independent set
8: [CGC] add a duplicate of the successor (and predecessor) of each remaining node to the node of its color.
9: end pfor

10: end for
11: return all nodes added to the independent set.

Fig. 11. Multicore-Oblivious Independent Set.

After step 2, for each group of nodes of the same color, we allot three times as much space for
duplicates to be inserted. We can compute the sizes of the groups with a prefix sums computation.
After step 4, nodes of the same ID will be consecutive in memory. We insert duplicates into the
previously allotted space by computing the number of duplicates with a prefix sums and writing at
an offset equal to the current group size.

Lemma 3. On an input of size n, MO–IS returns an independent set of at least n/3 nodes.

Proof. In each iteration, we add only nodes of the same color and so by the definition of a coloring,
none of these nodes are adjacent. Across each iteration, we explicitly exclude the successor and
predecessor of nodes already added to the set. Thus, the set returned is an independent set. Next,

24

note that this algorithm excludes a vertex precisely when one of its neighbors has been added to the
independent set, and so at least one node in every path of 3 nodes has been added to the set. Thus,
the independent set contains at least n/3 nodes. ut

We now analyze the complexity of this algorithm and obtain the following result.

Lemma 4. When executed on a h-level HM model with p cores, MO–IS on an input of size n termi-
nates in TIS(n, p) = O((n/p) log n+B1 log(pB1) log log n+log n(log log n)2) parallel steps, and incurs
O
(

n
qiBi

logCi
n + Ci

Bi
logB1

(qiCi) log log n + (log log n)2
)

cache misses at each of the qi caches in level
i of the hierarchy.

Proof. First, we claim that steps 1 through 4 can be completed with a constant number of sorts and
scans of the data. In each step, we are comparing each node with some property of its successor.
To do this without incurring a cache miss per time step, we sort a copy of the input by successor
index and compare entries of the same index in each array. To identify a log log n coloring of the
nodes in step 1 of MO–IS, we apply twice the deterministic coin flipping algorithm due to Cole and
Vishkin [16] which, given a |c|-coloring, constructs a coloring with 1+ log |c| colors. Because this new
color is a function of only the initial colors of itself and its successor, a constant number of sorts and
scans using the CGC scheduler suffices to accomplish this recoloring, and so the complexity of steps
1 through 4 is dominated by that of sorting.

Next, let nj denote the number of nodes of color i between steps 2 and 3. In the following loop, there
will be at most 3nj nodes of any particular color due to the possibility of 2 duplicates per node being
added in earlier iterations. We now analyze the complexity of each iteration of step 5. The scheduler
reduces the number of processors used so that at most one processor used has less than B1 units of
data, so sorting these nj units of data requires timeO

(
nj log nj

min(p,dnj/B1e)

)
= O(nj log nj/p+B1 log(pB1)+

log nj log log nj). This sums across all log log n iterations to O((n/p) log n + B1 log(pB1) log log n +
log n(log log n)2), using the fact that Σjnj ≤ 3n. As we had previously associated each node with its
successor and predecessor index and color, the remaining steps in the loop correspond to scans of the
data.

Next, step 6 consists of a sort of the data and so incurs O
(

nj

qiBi
log nj/(log min(Ci, nj/qi))

)
cache misses. Because the scheduler ensures that nj/p + 1 > B1 (where p is the number of ac-
tive processors), whenever nj ≤ qiCi, we still maintain that min(Ci, nj/qi) ≥ B1. So this bound
simplifies to O

(
nj

qiBi
logCi

nj + Ci
Bi

logB1
(qiCi)

)
. Steps 7, 8, and 9 consist of a scan of the data; How-

ever, in step 9, a level i cache could be tasked with writing a node of each color, thus incurring
O(log log n) cache misses. Thus, summed across all log log n iterations, this loop incurs at most
O
(

n
qiBi

logCi
n + Ci

Bi
logB1

(qiCi) log log n + (log log n)2
)

cache misses. ut

We now show that the complexity of each recursive level of MO–LR is dominated by that of
MO–IS and so analyze the total complexity of this algorithm.

Theorem 12. When executed on a h-level HM model with p cores, MO–LR on an input of size n

terminates in TLR(n, p) = O
(
(n/p) log n + (B1 log(pB1) log log n + log n(log log n)2)(log n

B1
)
)

paral-

lel steps, and incurs QLR(n, qi) = O(n
qiBi

logCi
n+(Ci

Bi
logBi

(qiCi) log log n+(log log n)2) log n
B1

) cache
misses at each of the qi level caches in level i of the hierarchy.

Proof. First, note that the operations performed in the loops at lines 3 and 5 consist of only sorts and
scans of the input. As the complexity of each of these operations is accounted for in the complexity
of MO–IS, the complexity of each recursive stage of this algorithm is dominated by that of MO–IS.

25

Because the scheduler does not split blocks across private caches, the number of processors (and also
the number of level i caches) decreases in proportion to the problem size. Specifically, we derive the
following recurrences:

TLR(n, p) =

TLR(n/2, p) + TIS(n, p) pB < n
TLR(n/2, p/2) + TIS(n, p) B < n ≤ pB
O(B1 log B1) n ≤ B

QLR(n, qi) =

QLR(n/2, qi) +QIS(n, qi) pB1 < n
QLR(n/2, qi/2) +QIS(n, qi) B1 < n ≤ pB1

O(1) n ≤ B1

By solving these recurrences, we conclude that the time complexity of this algorithm is TLR(n, p) =
O((n/p) log n + (B1 log(pB1) log log n + log n(log log n)2)(log n

B1
)) and similarly that the level i cache

complexity is QLR(n, qi) = O(n
qiBi

logCi
n + (Ci

Bi
logBi

(qiCi) log log n + (log log n)2) log n
B1

). ut

Euler Tours and Tree Problems. In this section, we present multicore-oblivious algorithms solving
various tree problems with the well known Euler tour technique [30], using list ranking as a subroutine.

We specify an Euler tour of T = (V,E) by defining a successor function S mapping each arc to the
next arc along the circuit. The standard way to do this, described by Tarjan and Vishkin [30], is to
fix a cyclic ordering on V and the successor of each arc (u, v) is (v, w) where w is the node following
u in the cyclic ordering of the adjacency of v. The proof that this defines an Euler tour (instead of a
set of arc-disjoint cycles) can be found in [30].

Algorithmically constructing this function is straightforward. For each node v, we assume that
the ordering on the set of nodes adjacent to v is simply the order in which these nodes appear in the
adjacency list of v. Then for each edge (ui, v), we can identify the successor (v, ui′) as ui′ follows ui

in the adjacency list, except when ui is the last node in the adjacency list of v. We can fix this by
making the adjacency list circular; that is, by appending the first node in the adjacency list of v to
the end of the adjacency list of v. Thus, for each node ui in a given adjacency list of v, we can define
the successor (v, ui′) of (u, v) in constant time.

For completeness, we include a formal presentation of this algorithm, called MO–ET, in Fig. 12.

MO–ET(T)
Input: tree T = (V, E) given as an adjacency list.
Output: Euler tour of T specified by an linked list L as previously specified.
1: [CGC] pfor each v ∈ V make the adjacency list of v circular end pfor
2: [CGC] pfor each pair of edges (u, v), (w, v) in the adjacency list of each node
3: set S(u, v) := (v, w) (possibly with some problem specific edge weight w(u, v))
4: end pfor
5: return the Euler tour S with weights w.

Fig. 12. Multicore-Oblivious Euler Tour

To make the adjacency lists circular, we must append the first node in each adjacency list to
the end of the respective adjacency list. Specifically, we scan in parallel across the data and write
separately the first edge pair in each adjacency list (step 1). By using the CGC scheduler, this requires
O(n/p + log p + B1) parallel time and incurs O

(
n

qiBi
+ 1
)

cache misses at each level i cache. The
next loop (step 2) consists of writing O(n) disjoint units of data, and so under the CGC scheduler,
this step has the same cache- and parallel time complexity as step 1.

26

We now briefly describe how the Euler tour technique is used to solve various tree problems.
Note that the descriptions of how to solve these specific problems require only a constant number of
additional sorts and parallel scans of the data, and so the complexity of each of these algorithms is
dominated by that of list ranking. We will conclude with a formal statement of this claim.

Rooting a Tree. Given a tree T = (V,E) and a designated vertex r ∈ V , a function p : V → V roots
a tree at r if for each node v 6= r, p(v) is the next node on the unique path from v to r. Using the
Euler tour technique, we can root a tree at r as follows. We construct an Euler tour S starting at r,
but breaking the edge from the last node u on the adjacency list of r and setting S((u, r)) = (u, r).
We then compute the list ranking of the list of arcs defined by S. Finally, for each arc (x, y), we set
p(y) = x whenever the ranking of (x, y) is smaller than that of (y, x). Correctness of this algorithm
follows from the observation that the Euler tour starting at r follows a depth first search of T ; thus,
an arc along the path towards the root will have smaller rankings than those along paths away from
the root.

Traversal Numbering. Given a tree T rooted at r, the preorder of a node is the order in which that
node is visited in a depth first search of T . We compute the preorder traversal d in which each node
appears as follows. First, we construct an Euler tour S of T ′ as previously described. We then assign
the weights w((p(v), v)) = 1 and w((v, p(v))) = 0 to these arcs. Then the preordering d of a vertex v
equals the ranking of (v, p(v)), and p(r) = 0. With small variations, we can also compute the inorder
traversal and the postorder traversal of T .

Vertex Depth. Given a tree T = (V,E), the depth of a vertex v is the distance between v and r.
We can compute the depth d of each vertex using the same approach as before, except by defining
w((p(v), v)) = 1 and w((v, p(v))) = −1. Then the depth d of a node v equals the rank of (p(v), v).

Subtree Size. Given a tree T = (V,E) rooted at r ∈ V by p : V → V , the subtree size at v is the
number of nodes below v in T ; that is, the number of nodes whose path to r contains v. Using a
similar approach, but with w((p(v), v)) = 0 and w((v, p(v))) = 1, the size of the subtrees rooted
at each vertex v equals the difference between the ranking of (v, p(v)) and (p(v), v) since each arc
between these two arcs is in the subtree rooted at v.

Connected Components in Forests. Given a graph F = (V,E) comprising of a set of t trees (that is,
a forest) and a set of R ⊆ V roots, we can construct a partition D : V → {1, . . . , t} defining the
connected components of F as follows. We construct a node s, called the superroot, and connect it to
all other roots. We then define w((s, r)) = 1 for each r ∈ R and w((u, v)) = 0 for all other arcs (u, v).
We make s the first node in the linked list by breaking any one arc to s. Then the two arcs incident
to any node except the superroot will have the same ranking, and so the connected component that
the node v 6= s belongs to is the ranking of either of its incident arcs.

Theorem 13. When executed on a h-level HM model with p cores, MO–ET on an input of size
n terminates in TET(n, p) = O

(
(n/p) log n + (B1 log(pB1) log log n + log n(log log n)2)(log n

B1
)
)

par-

allel steps, and incurs QET(n, qi) = O
(

n
qiBi

logCi
n + (Ci

Bi
logBi

(qiCi) log log n + (log log n)2) log n
B1

)
cache misses at each of the qi level caches in level i of the hierarchy. Furthermore, the problems of
rooting a tree, computing a traversal numbering, the depth of vertices and the subtree sizes in a rooted
tree can all be completed within these resource bounds.

27

Graph Connectivity. In this section, we describe an algorithm due to Hirschberg, Chandra, and
Sarwate [23] for connected components (and easily adapted for minimum spanning tree). We recur-
sively solve the problem as follows. For each node, we select the edge incident to the vertex of smallest
index. This set of edges induces a forest on the graph, and in each tree, some edge appears twice.
We arbitrarily select one of the endpoints as the root of each tree, and then solve the connected
components in forests problem as described under Euler Tours and Tree Problems. We then replace
all edges (u, v) with edges (D(u), D(v)) where D(u) is the connected component in the induced forest
to which u belongs, eliminate duplicates, and recursively identify the connected components of this
subproblem. We now formally present in Fig. 13 this algorithm, called MO–CC, describe the details
of its operation, and analyze its complexity.

MO–CC(G)
Input: graph G = (V, E) of n nodes and m edges given in adjacency list format.
Output: partition D : V → V such that D(u) = D(v) iff u is connected to v.
1: [CGC] VF = V

S
{s}; EF = ∅; V ′ = E′ = ∅

2: [CGC] pfor each v ∈ V D(v) = v end pfor
3: if m = 0 then return D
4: [CGC] pfor v ∈ V add to EF the edge incident to the vertex of smallest index end pfor
5: [CGC⇒SB] sort the nodes of EF

6: [CGC] pfor each edge (u, v) added to EF twice, add (u, s) to EF end pfor
7: [CGC] eliminate duplicates from EF .
8: compute the connected components D of the induced forest using MO–LR and MO–ET.
9: [CGC] pfor each u ∈ V , add D(u) to V ′

10: [CGC] pfor each (u, v) ∈ E, add (D(u), D(v)) to E′.
11: [CGC⇒SB] sort the nodes in V ′ and E′

12: [CGC] eliminate duplicates in V ′ and E′

13: set D′ := MO–CC(G′ = (V ′, E′))
14: [CGC] pfor v ∈ V , set D′(v) to D′(D(v)) end pfor
15: return D′

Fig. 13. Multicore-Oblivious Connected Components

Theorem 14. When executed on a h-level HM model with p cores, MO–CC on an input of size N =
n + m terminates in time TCC(n, m, p) = O

(
(N log N log N

B1
)/p + (B1 log(pB1) log log N + log N ·

(log log N)2)(log2 N
B1

)
)

parallel steps, and incurs QCC = O
(

N
qiBi

logCi
N log N

B1
+ (Ci

Bi
logB1

(qiCi)

log log n + (log log n)2) log2 N
B1

)
cache misses at each of the qi caches in level i of the hierarchy.

Proof. Correctness of this algorithm can be found in [23]. Note that in each connected component,
there is some node of least index, and so the edge between this node and the node incident to it of
least index will be added to EF for both of these nodes. We identify these edges by sorting EF in step
5 and comparing consecutive entries in steps 6 and 7. In steps 9, 10, and 14, we apply in parallel the
function D or D′ to O(n) nodes and O(m) edges. Note that each nonrecursive step of the algorithm
other than that of list ranking corresponds to either a sort or a scan of the data. So the complexity
of each recursive stage of this algorithm is dominated by that of list ranking. Furthermore, note that
the number of nodes in each connected component of at least 2 nodes decreases by a factor of at
least 2 at each level of recursion; thus, after O(log n) levels of recursion, the number of nodes equals
the number of connected components and there are no edges between the nodes. Thus, the level i

cache complexity of this algorithm equals the level i cache complexity of list ranking times O
(
log N

B1

)
(because when the problem size reduces to less than B1, the problem fits within a single private cache
and the scheduler ensures that no more cache misses are incurred because only a single processor is
active). ut

28

7.2 Network-Oblivious Algorithms

We now propose network-oblivious algorithms for list ranking, Euler tours and connected components.
Algorithms are built on their multicore-oblivious counterparts, however some modifications are re-
quired for dealing with the different specification models: indeed a network-oblivious algorithm is
defined on a distributed-memory model, while a multicore-oblivious algorithm is defined on a CREW
shared-memory.

List Ranking. In this section we describe a network-oblivious algorithm, named NO-LR, for comput-
ing the ranks of an n-node linked list L. The algorithm assumes the existence of a network-oblivious
sorting algorithm NO-SORT(n, f(n)) which sorts Θ (n) entries using f(n) PEs, where f(n) is a suit-
able nondecreasing function of the input size such that f(n) ≤ n and n/f(n) is a nondecreasing
function. We present upper bounds on the communication and computation complexities of NO-LR
which do not depend on the particular implementation of the sorting algorithm. Then, we consider the
case NO-SORT is implemented through the network-oblivious algorithm NO-CS given in Section 4.1.

NO-LR is defined on M(f(n)). We assume L to be uniformly distributed among the f(n) PEs:
the j-th PE contains nodes in positions jn/f(n), . . . (j + 1)n/f(n)− 1 of L, for 0 ≤ j < f(n). At the
high level, the algorithm works as the multicore-oblivious implementation in Fig. 10, however there
are substantial changes due to the different specification models (i.e., distributed vs share memory).
List contraction and expansion can be performed by means of O (1) calls to NO-SORT(n, f(n)).
The procedure for the identification of an independent set, called NO-IS, is given in Fig. 14 (the
pseudocode does not report superstep synchronizations and labels for clearness) and described in
more details below. NO-IS requires some prefix sum computations that are performed through the
network-oblivious algorithm NO-PS in Section 4.1. Each line consists of a constant number of 0-
supersteps in addition to those required by NO-SORT and NO-PS.

NO-IS(L)

Input: Linked list L of n nodes uniformly distributed among f(n) PEs.
Output: An independent set.
1: Identify a log log n coloring of L. Let Gi be the set of nodes of color i and let ni = |Gi|.
2: Use NO-SORT to associate with each node of L the color of its successor and predecessor.
3: Redistribute all the nodes of L among PEs in such a way each PE contains O (dni/f(n)e) nodes of Gi.
4: for each color i, with 0 ≤ i < log log n do
5: Redistribute nodes of Gi among PEs in such a way each PE contains O (dni/f(n)e) nodes of Gi.
6: For each 0 ≤ j < f(n)/f(ni), PEs in the j-th segment of f(n)/f(ni) consecutive PEs move all nodes of Gi into

the first PE of the segment, denoted as selected.
7: Sort by ID nodes of Gi with NO-SORT(Θ (ni) , f(ni)) using the f(ni) selected PEs, and then remove duplicates.

Mark the remaining nodes as independent.
8: For each node of Gi marked as independent create duplicates of its successor and predecessor.
9: Redistribute the new duplicates among the selected PEs is such a way each PE contains O (dni/f(ni)e) duplicates

and in particular O
�
dnj

i/f(ni)e
�

duplicates of color i, where nj
i is the number of duplicates of color j (and hence

in Gj) generated in Line 7.2 during the current iteration.
10: Redistribute duplicates among the f(n) PEs in such a way each PE contains O (dni/f(n)e) duplicates and in

particular O
�
dnj

i/f(n)e
�

duplicates of color j.
11: Collect nodes marked as independent in an array I of size Θ (n) distributed among the f(n) PEs.

Fig. 14. Network-Oblivious Independent Set.

To find the log log n coloring in Line 7.2 we make use of two rounds of the deterministic coin
tossing of Cole et al. [16], which can be accomplished with O (1) sorts. We denote by Gi the set of
nodes of color i, and let ni = |Gi|.

29

Line 7.2 is the most important step of the algorithm. To improve the parallelism in the for
loop, each PE should contain at most O (dni/f(n)e) nodes of Gi: however, if nodes of the same
color are stored in consecutive positions of the list as in the multicore-oblivious implementation, a
PE will contain O (min{ni, n/f(n)}) nodes of Gi, which is bigger than dni/f(n)e. We propose an
alternative layout where nodes of Gi are stored every Θ (n/ni) positions of L and hence each PE
contains O (dni/f(n)e) nodes of Gi. We require each ni to be a power of two and ni ≥ ni+1 for each
0 ≤ i < log log n: the first requirement increases the size n by at most a factor two, while the second
one is obtained by renaming colors (renaming can be accomplished with O (1) sortings and prefix
sums computations). Initially, nodes are sorted by color and then the log log n colors are partitioned
into segments of consecutive colors in such a way that for each segment S the number of L’s nodes
colored with colors in S is n0 (such a partition is well defined since the ni’s are powers of two and
nonincreasing). Then, nodes in the k-th segment, for 0 ≤ k < n/n0, are redistributed in L recursively
every n/n0 positions, starting from the k-th one. We now provide a formal description.

Each node of color i whose relative position in Gi is7 j, for 0 ≤ i < log log n and 0 ≤ j <
ni, (relative positions can be computed through a prefix sum computation) is assigned the key
KEY(i, j) =OFFi + jn/ni, where OFFi is an offset given by the recursive and sequential algo-
rithm COMPUTE_OFF(i, 0, n) in Fig. 15. Then, nodes are sorted according with the new key:
Lemma 5 shows the property of the new configuration of nodes in L. Note that, since each PE con-
tains nodes colored by at most log log n colors, each PE may require in the worst case the log log n
values n0, . . . nlog log n−1 for computing the key of each node: these values are obtained and spread
among PEs through O (log log n) prefix sum computations.

COMPUTE_OFF(i, k, m)

Input: Values i, k and m such that k ≤ i and
Pi

h=k nh ≤ m. The nk’s, for 0 ≤ k < log log n, are global variables.
Output: The value OFFi.
1: if k = i return 0.
2: Find the smallest k′, for k < k′ ≤ i such that

�Pk′−1
h=k

nh

nk

�
=

�Pi−1
h=k

nh

nk

�
.

3: return
�Pi−1

h=k
nh

nk

�
+ m

nk
·COMPUTE_OFF(i, k′, nk).

Fig. 15. Algorithm for computing OFFi.

Lemma 5. After sorting nodes by KEY(i, j), each PE contains O (dni/f(n)e) nodes of Gi, for each
0 ≤ i < log log n.

Proof. We first prove a property of procedure COMPUTE_OFF and then show that values KEY (i, j)
generates a permutation of values in [0, n). Then, we show the stated result.

Observe that COMPUTE_OFF(i, k,m) terminates after at most i + 1 recursive calls and

OFFi =

⌊∑i−1
h=k0

nh

nk0

⌋
+

n

nk0

⌊∑i−1
h=k1

nh

nk1

⌋
+ . . . +

n

nks−1

⌊∑i−1
h=ks

nh

nks

⌋
(4)

where k0, . . . ks is a non-empty subsequence of 0, . . . i, k0 = 0, and, if i > 0, ks < i. The j-th recursive
call, for 0 ≤ j < s, contributes to the j-th term of the equation and we have nkj

> nkj+1
. Indeed,

nkj
= nkj+1

for a suitable 0 ≤ j < s implies that, in the j-th recursive call, nk′ = nkj
and k′ = i. It

7 With abuse of notation, we suppose that nodes of Gi, for each 0 ≤ i < log log n, are ordered by ID.

30

follows that the j + 1-st call is a base case (i.e., COMPUTE_OFF(i, i, nkj
)) and then we get j = s,

which is a contradiction.
We now show that there cannot exist two nodes with the same key. Consider two nodes with keys

KEY(i, j) and KEY(̃i, j̃) and let i 6= ĩ or j 6= j̃. If i = ĩ, then it is simple to see that KEY(i, j) 6=
KEY (̃i, j̃). Suppose i 6= ĩ and set without loss of generality i < ĩ. Let OFFi defined as in Equation 4
and let OFFĩ be defined similarly and denote by k̃0, . . . k̃s̃ the correspondent subsequence of 0, . . . ĩ,
where k̃0 = 0 and k̃s̃ < ĩ. Denote by s′ the biggest value such that sequences k0, . . . ks′ and k̃0, . . . k̃s′

coincide. Clearly, 0 ≤ s′ < i and by construction we evince that⌊∑i−1
h=kh′

nh

nkh′

⌋
=

∑i−1

h= ˜kh′
nh

n ˜kh′

 for each 0 ≤ h′ < s′ and

⌊∑i−1
h=ks′

nh

nks′

⌋
6=

∑i−1

h=k̃s′
nh

nk̃s′

 (5)

For the sake of contradiction let KEY(i, j) = KEY (̃i, j̃); then we have:

j
n

ni
− j̃

n

nĩ

= (OFFĩ −OFFi). (6)

If s′ = 0, we replace the equality in Equation 6 with the module n/n0 relation. Since n/nh is divisible
by n/n0’s for each 0 ≤ h < log log n we have:

0 ≡

⌊∑ĩ−1
h=0 nh

n0

⌋
−

⌊∑i−1
h=0 nh

n0

⌋
mod

n

n0
.

For Equation 5, the two floor terms are different and smaller than n/n0, and then the right side is not
in relation with 0: a contradiction arises and we conclude that the two keys are different. If s′ > 0, we
divide both terms in Equation 6 by n/nks′−1

and replace the equality with the module nks′−1
/nks′

relation. Since nks′−1
/nh is divisible by nks′−1

/nks′ for each ks′ ≤ h < log log n, it follows that

0 ≡

∑ĩ−1
h=ks′

nh

nks′

− ⌊∑i−1
h=ks′

nh

nks′

⌋
mod

nks′−1

nks′
. (7)

However, the right term is not in relation with 0 since the two terms are different for Equation 5 and
smaller than nks′−1

/nks′ : this is a contradiction and we conclude the two nodes do not have the same
keys.

We now show that KEY(i, j) < n. If ni = n0, clearly KEY(i, j) < n. Suppose that n0 > ni. It is
easy to see that for each 0 ≤ h′ ≤ s, we get:⌊∑i−1

h=kh′
nh

nkh′

⌋
≤

n− nkh′

nkh′
.

Equation 4 becomes

OFFi ≤
n− nk0

nk0

+
n

nk0

nk0 − nk1

nk1

+ . . .
n

nks−1

nks−1−nks

nks

=
n

nks

− 1 <
n

ni
, (8)

Then, it follows that KEY(i, j) = OFFi + jn/ni < n.
Therefore, KEY(i, j) generates a permutation of integers in [0, n) and can be used for permuting

nodes in L. After sorting nodes according with KEY (i, j), nodes of Gi are located every n/ni posi-
tions: since each PE contains n/f(n) consecutive positions of L, at most O (dni/f(n)e) nodes of Gi

are contained in each PE. ut

31

Let us consider now the i-th iteration of the for loop. In Line 7.2, nodes in Gi are evenly distributed
among the f(n) PEs: this operation is useless when i = 0 since the sorting in Line 7.2. However if
i > 0, each PE contains O (dni/f(n)e+ log log n) nodes of color i at the beginning of the for loop: the
O (dni/f(n)e) nodes of color i actually in L and O (ni/f(n) + log log n) duplicates of color i added
in Line 7.2 of previous iterations (see below for more details). In rebalancing, each PE performs a
prefix sum computation for computing the number of nodes of Gi stored in preceding PEs, and sends
O (ni/f(n) + log log n) messages to at most O (log log n) PEs.

In Line 7.2, Θ (ni) nodes are sorted with NO-SORT for removing duplicates: however, NO-SORT
requires f(ni) PEs for sorting Θ (ni) values. For this reason, the Θ (ni) nodes of Gi (included du-
plicates) are moved in Line 7.2 into f(ni) PEs (called selected PEs) evenly chosen among the f(n)
PEs: each selected PE receives O (dni/f(ni)e) messages from f(n)/f(ni) consecutive numbered PEs.
Nodes that are not removed are marked independent.

In Lines 7.2 and 7.2, duplicates of successors and predecessors of the remaining nodes of Gi are
created. Each duplicate of a successor (resp., predecessor) is inserted in Gj where j is the color of the
successor (resp., predecessor). Then, duplicates are distributed among the f(ni) selected PEs using
a procedure similar to the one adopted in Line 7.2, in such a way each PE contains O (dni/f(ni)e)
duplicates, and in particular O

(
dnj

i/f(ni)e
)

duplicates of color j, where nj
i denotes the number of

duplicates of color j created at the current iteration.
In Line 7.2 each selected PE distributes duplicates created in Line 7.2 among the f(n)/f(ni) PEs

from which it received nodes of Gi in Line 7.2: each PE receives no more duplicates than the number
of nodes it sent in Line 7.2 and O

(
dnj

i/f(n)e
)

duplicates of color j. Observe that since each PE

receives O
(
dnj

i/f(n)e
)

duplicates of color j in each iteration, a PE contains O
(∑j−1

i=0 dn
j
i/f(n)e

)
=

O (nj/f(n) + log log n) duplicates of color j just before the j-th iteration. For these reason, nodes are
redistributed in Line 7.2.

Finally in Line 7.2, the independent set is stored in an array of size Θ (n) distributed among PEs
using a prefix sum computation.

It is easy to see that NO-IS and NO-LR are equivalent to their multicore implementations and
that NO-IS returns an independent set of size at least n/3 (Lemma 3).

We now analyze the communication and computation complexities of NO-LR. We denote the
communication and computation complexities of the sorting algorithm by HS(n, p,B) and TS(n, p)
and set without loss of generality:

HS(n, p,B) = O
(

n

Bp

log n

log(1 + n/p)
+ K(n, p,B)

)
, TS(n, p) = O

(
n

p
log n + D(n, p)

)
(9)

where K(n, p,B) and D(n, p) are suitable functions increasing in n. We remind that NO-SORT can
be simulated on p processors where p ≤ f(n) and when p > f(n) only f(n) processors are used:
then HS(n, p,B) = Ω (HS(n, f(n), B)) and TS(n, p) = Ω (TS(n, f(n))) for p > f(n). Without loss
of generality, we assume K(n, p,B) = Ω (K(n, f(n), B)), D(n, p) = Ω (D(n, f(n))), HS(n, p,B) =
O (K(n, p,B)) and TS(n, p) = O (D(n, p)) when p ≥ f(n) (indeed, n log n/(Bp log(n/p)) and (n/p) log n
are loose lower bounds when p = Ω (f(n))).

32

Theorem 15. The network-oblivious algorithm NO-LR with input size n exhibits the following com-
munication HNO-LR(n, p,B) and computation TNO-LR(n, p) complexities when executed on M(p, B),
for p ≤ f(n):

HNO-LR(n, p,B) = O
(

n

Bp

log n

log(1 + n/p)
+ (K(n, p,B) + log p log log n + p/f(n)) log n log log n

)
(10)

TNO-LR(n, p) = O ((n/p) log n + (D(n, p) + (f(n)/p) log f(n) log log n) log n log log n) . (11)

Proof. NO-IS uses the network-oblivious algorithm NO-PS for computing a prefix sum of n values
on f(n) PEs given in Section 4.1: we remind its communication and computation complexities on
M(p, B), for p ≤ f(n), are O (log p) and O (n/p + (f(n)/p) log n), respectively.

We remind that when NO-LR is executed on M(p, B) each processor simulates f(n)/p consecutive
numbered PEs, and contains O (n/p) nodes and in particular O (dni/pe) nodes of color i after Line 7.2
(this can be proved as in Lemma 5).

Lines 7.2,7.2, 7.2, 7.2 require communication and computation complexities O(HS(n, p,B) +
log p log log n) andO (TS(n, p) + (f(n)/p) log f(n) log log n), respectively. The first term is due to sort-
ing, while the remains are a consequence of key computation. Indeed, a call to COMPUTE_OFF(i, 0, n)
for a given color i, for 0 ≤ i < log log n, requires O (i + 1) operations and values n0, . . . ni: since each
processor contains O (n/p) nodes, key computation requires O ((n/p) log log n) operations, which
is negligible compared with sorting. Values n0, . . . nlog log n−1 are computed and spread among PEs
through O (log log n) prefix sum computations which in total require O (log p log log n) blocks and
O ((f(n)/p) log f(n) log log n) operations on M(p, B).

Line 7.2 requires O(ni/(Bp)+ log log n+log p) communications and O(ni/p+log log n+(f(n)/p)
log f(n)) operations: a PE containsO (ni/p + log log n) nodes of Gi that are distributed toO (log log n)
PEs (which may be simulated by O (log log n) distinct M(p, B) processors), after a prefix sum com-
putation.

In Line 7.2, the f(n) PEs are partitioned into segments of f(n)/f(ni) consecutive numbered PEs
and then PEs in each segment send their Gi’s nodes to the first PE in the segment: if f(ni) ≥ p,
the communication complexity is O (ni/(Bf(ni)) + 1) since each segment is contained into O (1)
processors; if ni ≥ p and f(ni) < p, the communication is O (ni/(Bf(ni)) + p/f(ni)) since a seg-
ment is contained into O (p/f(ni)) processors; if ni < p (hence, f(ni) < p) the communication is
O (ni/(Bf(ni)) + p/f(p)) since the ni nodes are contained into ni processors (since they are evenly
distributed among PEs/processors), and only ni/f(ni) ≤ p/f(p) PEs (which are simulated by at most
p/f(p) processors) within a segment sends messages to the their respective selected PE. We evince
Line 7.2 exhibits O (ni/(Bf(ni)) + p/f(p)) communication complexity and O (ni/f(ni)) computation
complexity.

Line 7.2 requires O(HS(ni,min{p, f(ni)}, B)) messages and O(TS(ni,min{p, f(ni)})) operations:
a call to NO-SORT(ni, f(ni)) requires f(ni) PEs and it is executed by min{p, f(ni)} processors of
M(p, B).

The communication and computation complexities of Lines 7.2 and 7.2 areO (HS(ni,min{p, f(ni), B})
+ log p log log n) and O (TS(ni,min{p, f(ni)})+ (f(n)/p) log f(n) log log n), respectively: the second
term is due to the computation of nj

i , i.e. the number of duplicates of color j generated at the i-th
iteration, for each 0 ≤ j < log log n, through O (log log n) prefix sum computations.

Finally, the cost of Line 7.2 is equivalent to the one of Line 7.2.
Remember that HS(n, p,B) = Ω (HS(n, f(n), B)) if p ≥ f(n), and thus min{p, f(ni)} can be

replaced with p in the above bounds. Since HS(ni, p, B) = Ω (ni/(Bf(ni))) and TS(ni, f(ni)) =

33

Ω (ni/f(ni)), we evince that the communication and computation complexities of NO-IS are:

HNO-IS(n, p,B) = O

(
HS(n, p,B) + (log p log log n + p/f(p)) log log n +

log log n−1∑
i=0

HS(ni, p, B)

)
,

(12)

TNO-IS(n, p) = O

(
TS(n, p) + (f(n)/p) log f(n)(log log n)2 +

log log n−1∑
i=0

TS(ni, p)

)
. (13)

By plugging Equations 9 into previous ones, we get:

HNO-IS(n, p,B) = O
(

n

Bp

log n

log(1 + n/p)
+ (K(n, p,B) + log p log log n + p/f(n)) log log n

)
TNO-IS(n, p) = O ((n/p) log n + (D(n, p) + (f(n)/p) log f(n) log log n) log log n) .

NO-LR consists of O (log n) recursive calls of size n/ci for a suitable constant c > 1. The communi-
cation complexity is given by the following recurrence:

HNO-LR(n, p,B) =
{

HNO-LR (n/c,min {p, f (n/c)} , B) +O (HNO-IS(n, p,B)) if n > O (1)
0 otherwise

When p ≥ f(n), K(n, p,B) = Ω (K(n, f(n), B)) and HS(n, p,B) = O (K(n, p,B)) (i.e., K(n, p,B) =
Ω (n log n/(Bf(n) log(n/f(n))))). Then, it is not difficult to see that the above recurrence solves to
Equation 10. A similar proof gives Equation 11 as well. ut

The above theorem provides a general result which applies to each K(n, p,B) and D(n, p). In
many cases (as we will see in Lemma 7), the stated upper bounds can be improved using properties
of K(n, p,B) and D(n, p).

Lemma 6. The execution of NO-LR on M(p, B) requires O (n/p + (f(n)/p) log log n) words of mem-
ory, which is optimal when f(n) ≤ n/ log log n.

Proof. Each PE requires O (n/f(n)) words for storing list nodes and duplicates, and O (log log n)
words for storing the log log n values ni required by COMPUTE_OFF. Since each M(p, B) processor
simulates f(n)/p PEs, the statement follows. ut

Suppose NO-LR adopts as sorting algorithm NO-CS, which is described in Section 4.1. In this
case, upper bounds on the communication and computation complexities of NO-LR are given by
specializing results in Theorem 15. However, better upper bounds are given by an ad-hoc proof,
provided in the following lemma.

Lemma 7. Suppose NO-LR uses the network-oblivious algorithm NO-CS as sorting primitive. Then,
the upper bounds on NO-LR given in Theorem 15 become:

HNO-LR(n, p,B) = O

(
n

Bp
+

(√
n

p
+

√
nε

B
+ pε

)
log n log log n

)
, (14)

TNO-LR(n, p) = Θ

(
n

p
log n + nε log2 n log log n

)
(15)

for p ≤ n1−ε. When p ≤ n1−ε/ log n log log n and B = O
(
min{

√
n/p, n/p1+ε}/(log n log log n)

)
, the

algorithm has optimal communication and computation complexities.

34

An ad-hoc analysis gives the following improved upper bounds for NO-LR:

HNO-LR(n, p,B) = O
(

n

Bp
+
√

n

p
log log n +

nε

B
(log log n)1−ε + n

ε
2 (log log n)1−

ε
2 + pε log n log log n

)
(16)

TNO-LR(n, p) = O
(

n

p
log n + nε log n(log log n)1−ε

)
. (17)

for p ≤ n1−ε. When p ≤ (n/ log log n)1−ε and B = O
(
min{

√
(n log log n)/p, n/(p1+ε log n)}/ log log n

)
,

the algorithm has optimal communication and computation complexities.

Proof. Remember from Corollary 2, that NO-CS is defined on f(n) = n1−ε PEs for any arbitrary
constant ε ∈ (0, 1). In order to use Theorem 8, we have to rewrite upper bounds on communica-
tion and computation complexities of NO-CS in such a way HS(n, p,B) = Ω (HS(n, f(n), B)) and
TS(n, p,B) = Ω (TS(n, f(n), B)) for p > f(n). Then, we get:

HNO-CS(n, p,B) = O
(

n

Bp
+
√

n

p
+

nε

B
+ nε/2

)
, TNO-CS(n, p) = O

(
n

p
log n + nε log n

)
.

We evince that K(n, p,B) = O
(√

n/p + nε/B + nε/2
)

and D(n, p) = O (nε log n). Equations 14
and 15 follows from Theorem 15.

Better upper bounds follow observing that both K(n, p,B) and D(n, p) are concave and then
Equation 12 in the proof of Theorem 15 is maximized when ni = n/ log log n and we get:

HNO-IS(n, p,B) = O
(

n

Bp
+
√

n

p
log log n +

nε

B
(log log n)1−ε + nε/2(log log n)1−ε/2 + pε log log n

)
,

TNO-IS(n, p) = O
(

n

p
log n + nε log n(log log n)1−ε

)
.

for p ≤ n1−ε. Since each term, but the last, decreases geometrically in n, Equations 16 and 17 follow.
ut

Corollary 4. Suppose NO-LR uses the network-oblivious algorithm NO-CS as sorting primitive.
Then NO-LR when executed on a D-BSP(P, g,B) with input size n exhibits optimal communication
time,

D(n, P, g,B) = Θ

(
ng0

PB0

)
for P ≤ (n/ log log n)1−ε and B0 = O

(
min{

√
(n log log n)/p, n/(p1+ε log n)}/ log log n

)
.

Proof. The upper bound is straightforward, and optimality can be proved as is Lemma 2. ut

7.3 Euler Tours and Graph Connectivity

As seen in Section 7.1, a number of tree problems are solved by computing an Euler tour and then
performing a list ranking on the tour with appropriate weights. A network-oblivious algorithm for
Euler tours can be derived from the multicore-oblivious one. More in details the algorithm, named
NO-ET, is defined on M(f(n)), where f(n) is defined as in Section 7.2. (The NO-ET is defined for
f(n) PEs since is often followed by NO-LR in many applications as we will see). The n adjacency lists

35

of the input tree T are distributed as follows: the lists are concatenated and then envisioned as an
unique array which is distributed evenly among PEs as usual: it is easy to see that the list of a node
i is distributed among O (ddif(n)/ne) consecutive numbered PEs, where di is the degree of i. We
suppose that, whenever a list is distributed among many PEs, these PEs know in which PE the list
head is stored and to which node the list belongs (this assumption may be obtained by an adaptation
of the network-oblivious prefix sum algorithm). A list can be made circular without communications
if it is contained in one PE, or through O (1) messages exchanged between the PEs containing the
head and the tail. Since the successor of arc (u, v) is (v, u′), where u′ is the successor of u in the
adjacency list of v, the computation of the tour requires O (1) messages exchanged between adjacent
PEs: indeed, at most one successor of nodes stored in a PE is stored in the adjacent PE.

Theorem 16. The network-oblivious NO-ET with input size n exhibits O (1) communication com-
plexity and O (n/p) computation complexity when executed on M(p, B) with p ≤ f(n).

Proof. Making the list circular requires O (1) messages in M(p, B) since each processor of M(p, B)
contains at most two incomplete adjacency lists. The actual computation of the tour requires O (1)
messages because communication on M(f(n)) is between adjacent PEs. ut

In the remaining part of the section, we suppose that NO-CS is used as sorting primitive in NO-LR
and then f(n) = n1−ε, where ε is an arbitrary constant in (0, 1).
Corollary 5. There exist network-oblivious algorithms defined on M(n1−ε), where ε is an arbitrary
constant in (0, 1), for rooting a tree, traversal numbering, vertex depth, subtree size and connected
components in a forest, whose communication and computation complexities on an M(p, B) are

H(n, p,B) = O
(

n

Bp
+
√

n

p
log log n +

nε

B
(log log n)1−ε + nε/2(log log n)1−ε/2 + pε log n log log n

)
,

T (n, p) = O
(

n

p
log n + nε log n(log log n)1−ε

)
for p ≤ n1−ε. When p ≤ (n/ log log n)1−ε and B = O

(
min{

√
(n log log n)/p, n/(p1+ε log n)}/ log log n

)
,

the algorithm has optimal communication and computation complexities.

Proof. As seen in a previous section the cited problems can be solved through the computation of an
Euler tour and of its list ranking with suitable weights. The stated results follow by using NO-CS as
sorting primitive in NO-LR and upper bounds in Lemma 7 and Theorem 16 ut

We observe that the adjacency lists of a tree can be constructed from the set of undirected arcs
by replacing each undirected arch (u, v) with two direct arcs (u, v) and (v, u) and then sorting them
lexicographically.

A network-oblivious algorithm for computing connected components of a graph is given by a
straightforward adaptation of the multicore-oblivious algorithm given in Section 13 which uses the
network-oblivious algorithms for sorting, list ranking and connected components in a tree.
Corollary 6. There exists a network-oblivious algorithm defined on M((n + m)1−ε), where ε is an
arbitrary constant in (0, 1), for computing the connected components of a graph of n nodes and m
edges, whose communication and computation complexities on an M(p, B) are

H(n, p,B) = O

(
N(n, m)

Bp
+

√
N(n, m)

p
Γ (n) +

N(n, m)ε

B
Γ (n)1−ε + N(n, m)ε/2Γ (n)1−ε/2 + pε log nΓ (n)

)
(18)

T (n, p) = O
(

N(n, m)
p

log n + N(n, m)εΓ (n)1−ε log n

)
, (19)

36

where N(n, m) = n + m log n, Γ (n) = log n log log n and p ≤ (n + m)1−ε.

Proof. The network-oblivious algorithm consists of log n recursive calls of size O
(
n/2i + m

)
and each

recursive call is dominated by the computation of the list ranking. Then by using NO-CS as sorting
primitive in NO-LR, we get that the communication complexity of the algorithm is asymptotically
upper bounded by the following summation:

log n−1∑
i=0

ñi + m

Bp
+

√
ñi + m

p
log log n +

(ñi + m)ε

B
(log log n)1−ε + (ñi + m)ε/2(log log n)1−ε/2+

+ pε log n log log n

where ni = n/2i and
∑log n−1

i=0 ñi < 2n. Since the second, third and fourth terms are concave, Equa-
tion 18 follows by setting ni = n/ log n in the concave terms. Equation 19 can be proved similarly. ut

8 Conclusion

In this paper we have addressed the design of parallel algorithms that are oblivious to machine para-
meters for two dominant machine configurations: the chip multicores and the network of processors.

Initially, we have focused on multicores and described the Hierarchical Memory (HM) model,
which generalizes the 3-memory-level multicore model in [8] to any number of memory levels h ≥ 3.
Then, we have introduced the notion of multicore-oblivious algorithm, that is, an algorithm that
does not use specific values for multicore parameters such as number of cores, number of levels of
caches or their sizes, block sizes, etc., yet performs efficiently across a wide variety of multicores. To
address this challenge, we have proposes some simple enhancements to HM algorithms, which consist
in hints in the algorithm that are meant to be interpreted and used by the run-time scheduler to
decide how to schedule parallel tasks generated during execution. The multicore-oblivious algorithms
we have presented use two main types of scheduler hints: the Coarse-Grained Contiguous (CGC)
scheduling and the Space-Bound (SB) scheduling. We also have proposed a third hint (CGC on
SB) that combines these two. By using these hints, the algorithm suggests the run-time scheduler
how it should distribute computation among cores and caches, while it remains oblivious of machine
parameters since the actual distribution is performed by the scheduler.

We have instantiated this approach with provably efficient multicore-oblivious algorithms for a
number of fundamental problems: matrix computations (matrix multiplication and transposition),
prefix sum computation, FFT, Gaussian Elimination paradigm, sorting, list ranking, Euler tours, a
number of tree problems based on Euler tours, and connected components.

Building on some of the above multicore-oblivious algorithms, we have developed novel and effi-
cient network-oblivious algorithms. The concept of network-oblivious algorithm was introduced in [7]
and refers to an algorithm for a distributed-memory model which does not depend on the character-
istic of the machine, e.g. processor number, bandwidth and latency parameters. We have proposed
efficient network-oblivious algorithms for sorting, Gaussian Elimination paradigm, list ranking, Euler
tours, a number of tree problems based on Euler tours, and connected components. These algorithms
are appealing because in many cases they exhibit optimal performance on the Decomposable-BSP
model [5], which effectively describes a wide and significant class of parallel platforms.

It worth to be noticed that in many cases the multicore and network-oblivious algorithms for a
given problem are based on the same ideas, which work also for cache-oblivious algorithms. Never-
theless, multicore and network-oblivious algorithms have substantial differences due to the different
model in which they are specified. An example is the network-oblivious algorithm for GEP, named
N-GEP which, in order to achieve optimal communication, is somewhat modified from I-GEP.

37

In conclusion we propose a summarizing table containing the main results of the paper. The sec-
ond column gives the time/computation complexity of multicore and network-oblivious algorithms
which coincide under some assumptions; the third and fifth columns provide the cache and com-
munication complexities of multicore and network-oblivious algorithms respectively; the fourth and
sixth columns provide the parameter ranges for which the entries in table are verified (note that the
are proposed in a simplified form for readability). We remind that network-oblivious algorithms for
matrix multiplication, transposition, FFT and prefix sum computation were proposed in [7, 6].

Problem MO and
NO time

MO Cache MO Range7 NO Communication NO Range

Prefix sum Θ
�

n
p

�
Θ
�

n
qiBi

�
p ≤ n/ log n Θ (log p) p ≤ n/ log n, B ≥ 1

Matrix trans-
position

Θ
�

n2

p

�
O
�

n2

qiBi
+ Bi

�
p ≤ n2, B2

i ≤ Ci O
�

n2

Bp
+
q

n
p

�
p ≤ n2, B ≥ 1

Matrix multi-
plication

Θ
�

n3

p

�
Θ

�
n3

qiBi

√
Ci

�
p ≤ n2, B2

i ≤ Ci Θ
�

n2

B
√

p

�
p ≤ n2, B ≤ n2/p

GEP Θ
�

n3

p

�
Θ

�
n3

qiBi

√
Ci

�
p ≤ n2/ log2 n,
B2

i ≤ Ci; Ci =

Ω
�
piCi−1 log2 Ci

Ci−1

�
O
�

n2

B
√

p
+ n log2 n

�
p ≤ n2/ log2 n, B ≥ 1

FFT Θ
�

n log n
p

�
Θ
�

n
qiBi

logCi
n
�

p ≤ n, B2
i ≤ Ci Θ

�
n

pB
log(1+n/p) n

�
p ≤ n, B ≤

p
n/p

Sorting Θ
�

n
p

log n
�

Θ
�

n
qiBi

logCi
n
�

p ≤ n/ log log n, B2
i ≤

Ci

O
�

n
pB

+
q

n
p

�
p ≤ n1−ε, ε ar-
bitrary constant in
(0, 1), B ≥ 1

List ranking Θ
�

n
p

log n
�
O
�

n
qiBi

logCi
n+

(log log n)2 log n
Bi

� p ≤ n
(log log n)2 log n

,

B2
i ≤ Ci

O
�

n
Bp

+
q

n
p

log log n

+pε log n log log n)

p ≤ (n/ log log n)1−ε,
ε arbitrary constant
in (0, 1), B ≥ 1

Acknowledgments. The authors would like to thank Andrea Pietracaprina and Keshav Pingali
for useful discussions.

References

1. L. Arge, M. Goodrich, and N. Sitchinava. Parallel external memory graph algorithms. 2009.
2. L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava. Fundamental parallel algorithms for private-cache chip

multiprocessors. In Proc. of the 20th ACM Symposium on Parallelism in Algorithms and Architectures, pages
197–206, New York, NY, USA, 2008. ACM.

3. D. Bailey. FFTs in external or hierarchical memory. Journal of Supercomputing, 4:23–35, 1990.
4. M. A. Bender, J. T. Fineman, S. Gilbert, and B. C. Kuszmaul. Concurrent cache-oblivious B-trees. In Proc. of

the 17th ACM Symposium on Parallelism in Algorithms and Architectures, pages 228–237, New York, NY, USA,
2005. ACM.

5. G. Bilardi, A. Pietracaprina, and G. Pucci. Decomposable BSP: A bandwidth-latency model for parallel and hier-
archical computation. In J. Reif and S. Rajasekaran, editors, Handbook of Parallel Computing: Models, Algorithms
and Applications, pages 277–315. CRC Press, 2007.

6. G. Bilardi, A. Pietracaprina, G. Pucci, and F. Silvestri. manuscript in preparation.
7. G. Bilardi, A. Pietracaprina, G. Pucci, and F. Silvestri. Network-oblivious algorithms. In Proc. of the 21st IEEE

International Parallel and Distributed Processing Symposium, pages 1–10, 2007.
8. G. Blelloch, R. Chowdhury, P. Gibbons, V. Ramachandran, S. Chen, and M. Kozuch. Provably good multicore

cache performance for divide-and-conquer algorithms. In Proc. of the 19th ACM-SIAM Symposium on Discrete
Algorithms, pages 501–510, Philadelphia, PA, USA, 2008. SIAM.

9. G. Blelloch and P. Gibbons. Effectively sharing a cache among threads. In Proc. of the 16th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 235–244, New York, NY, USA, 2004. ACM.

10. G. Blelloch, P. Gibbons, and H. Simhadri. Brief announcement: Low depth cache-oblivious sorting. In Proc. of the
20th ACM Symposium on Parallelism in Algorithms and Architectures, New York, NY, USA, 2009. ACM.

7 Some (minor) constraints relating to cache parameters are omitted.

38

11. B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and the Chapel language. International
Journal of High Performance Computing Applications, 21(3):291–312, 2007.

12. R. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming. In Proc. of the 17th ACM-SIAM
Symposium on Discrete Algorithms, pages 591–600, New York, NY, USA, 2006. ACM.

13. R. Chowdhury and V. Ramachandran. The cache-oblivious Gaussian elimination paradigm: Theoretical framework,
parallelization and experimental evaluation. In Proc. of the 19th ACM Symposium on Parallelism in Algorithms
and Architectures, pages 71–80, New York, NY, USA, 2007. ACM.

14. R. Chowdhury and V. Ramachandran. Cache-efficient dynamic programming algorithms for multicores. In Proc.
of the 20th ACM Symposium on Parallelism in Algorithms and Architectures, pages 207–216, New York, NY, USA,
2008. ACM.

15. R. Cole and V. Ramachandran. Resource oblivious multicore sorting, 2009.
16. R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control,

70(1):32–53, 1986.
17. R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking. Inf. Comput., 81(3):334–352, 1989.
18. J. Cooley and J. Tukey. An algorithm for the machine computation of the complex Fourier series. Mathematics of

Computation, 19:297–301, 1965.
19. P. Duhamel and M. Vetterli. Fast Fourier transforms: a tutorial review and a state of the art. Signal Process.,

19(4):259–299, 1990.
20. M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In Proc. of the 40th IEEE

Symposium on Foundations of Computer Science, pages 285–297, Washington, DC, USA, 1999. IEEE.
21. M. Frigo and V. Strumpen. The cache complexity of multithreaded cache oblivious algorithms. In Proc. of the

18th ACM Symposium on Parallelism in Algorithms and Architectures, pages 271–280, New York, NY, USA, 2006.
ACM.

22. M. T. Goodrich. Communication-efficient parallel sorting. SIAM Journal on Computing, 29(2):416–432, 1999.
23. D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. Computing connected components on parallel computers.

Commun. ACM, 22(8):461–464, 1979.
24. D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-memory matrix multiplication.

Journal of Parallel and Distributed Computing, 64(9):1017–1026, 2004.
25. J. Jaja. An Introduction to Parallel Algorithms. Addison-Wesley Professional, March 1992.
26. R. E. Ladner and M. J. Fischer. Parallel prefix computation. J. ACM, 27(4):831–838, 1980.
27. F. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann,

1991.
28. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Applied Mathematics, 36:177–189,

1979.
29. F. Silvestri. Oblivious Computations on Memory and Network Hierarchies. PhD thesis, Department of Information

Engineering, University of Padova, 2009.
30. R. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM J. Computing, 14:862–874, 1984.
31. P. d. l. Torre and C. P. Kruskal. Submachine locality in the bulk synchronous setting (extended abstract). In

Proc. of the 2nd International Euro-Par Conference on Parallel Processing-Volume II, volume 1124 of LNCS, pages
352–358, London, UK, 1996. Springer-Verlag.

32. L. G. Valiant. A bridging model for multi-core computing. In Proc. of the 16th Annual European Symposium,
volume 5193 of LNCS, pages 13–28, Berlin, Heidelberg, 2008. Springer-Verlag.

33. J. Vitter and M. Shriver. Algorithms for parallel memory II: Hierarchical multilevel memories. Algorithmica,
12:148–169, 1994.

34. J. C. Wyllie. The Complexity of Parallel Computations. PhD thesis, Cornell University, Ithaca, NY, USA, 1979.

39

Appendix 1: N-GEP’s functions A, B and C

For convenience, we give the pseudocodes of N-GEP’s functions A, B and C. The construct sync indi-
cates the synchronization at the end of a superstep (superstep labels are not reported for simplicity)
and the assignment L2 ← L1, with L1 and L2 matrices of equal dimension, involves the copy of each
entry of L1 into the corresponding entry of L2 and is achieved by means of a suitable communication
among the PEs.

A(X, m,P)

Input: m×m matrix X ≡ x[I, I] with I interval in [0, n); set P of consecutive numbered PEs assigned to A.
Output: execution of all updates 〈i, j, k〉 ∈ T , with T = Σf ∩ (I × I × I).
1: if T = ∅ then return; if m = 1 then X[0, 0]← f(X[0, 0], X[0, 0], X[0, 0], X[0, 0]) and return;
2: Let P0 and P1 be the partition of P where each set contains |P|/2 consecutive numbered PEs;
3: Allocate space for eight m/2 ×m/2 matrices X̃, X̃0, X̃1, U , U ′, V , V ′ and W , distributed as follows: U ′ and X̃0

(resp., V ′ and X̃1) are evenly distributed in row-major among min{|P|/2, m2/4} PEs of P0 (resp., P1); X̃, U , V
and W are evenly distributed in row-major among min{|P|, m2/4} PEs of P;

4: X̃ ← X0,0; sync; {The input to the next recursive call is stored in the support matrix X̃}
5: A(X̃, m/2,P);
6: X0,0 ← X̃; sync; {The output of the recursive call is stored in X0,0}
7: X̃0 ← X0,1, X̃1 ← X1,0, U ′ ← X0,0, V ′ ← X0,0; sync;
8: in parallel: B(X̃0, U ′, m/2,P0), C(X̃1, V ′, m/2,P1);
9: X0,1 ← X̃0, X1,0 ← X̃1; sync;
10: X̃ ← X1,1, U ← X1,0, V ← X0,1, W ← X0,0; sync;
11: D∗(X̃, U, V, W, m/2,P);
12: A(X̃, m/2,P);
13: X1,1 ← X̃; sync;
14: X̃0 ← X1,0, X̃1 ← X0,1, U ′ ← X1,1, V ′ ← X1,1; sync;
15: in parallel: B(X̃0, U ′, m/2,P0), C(X̃1, V ′, m/2,P1);
16: X1,0 ← X̃0, X0,1 ← X̃1; sync;
17: X̃ ← X0,0, U ← X0,1, V ← X1,0, W ← X1,1; sync;
18: D∗(X̃, U, V, W, m/2,P);
19: X0,0 ← X̃; sync;
20: Delete the eight temporary matrices;
B(X, U, m,P)

Input: m ×m matrices X ≡ x[I, J] and U ≡ x[I, I], with
I, J intervals in [0, n) and I∩J = ∅; set P of consecutive
PEs assigned to B.

Output: execution of all updates T = Σf ∩ (I × J × I).
1: if T = ∅ then return; if m = 1 or |P| = 1 then Solve

the problem sequentially with I-GEP and return;
2: Let P0 and P1 be the partition of P where each set

contains |P|/2 consecutive numbered PEs;
3: Allocate space for eight m/2 × m/2 matrices X̃i, Ui,

Vi, and Wi for i ∈ {0, 1} in such a way that X̃i, Ui,
Vi and Wi are evenly distributed in row-major among
min{|P|/2, m2/4} PEs of Pi;

4: X̃i ← X0,i, Ui ← U0,0 ∀i ∈ {0, 1}; sync;
5: in parallel: B(X̃i, Ui, m/2,Pi) ∀i ∈ {0, 1};
6: X0,i ← X̃i ∀i ∈ {0, 1}; sync;
7: X̃i ← X1,i, Ui ← U1,0, Vi ← X0,i, Wi ← U0,0 ∀i ∈
{0, 1}; sync;

8: in parallel: D∗(X̃i, Ui, Vi, Wi, m/2,Pi) ∀i ∈ {0, 1};
9: X1,i ← X̃i ∀i ∈ {0, 1}; sync;
10: X̃i ← X1,i, Ui ← U1,1 ∀i ∈ {0, 1}; sync;
11: in parallel: B(X̃i, Ui, m/2,Pi) ∀i ∈ {0, 1};
12: X1,i ← X̃i ∀i ∈ {0, 1}; sync;
13: X̃i ← X0,i, Ui ← U0,1; Vi ← X1,i, Wi ← U1,1 ∀i ∈
{0, 1}; sync;

14: in parallel: D∗(X̃i, Ui, Vi, Wi, m/2,Pi) ∀i ∈ {0, 1};
15: X0,i ← X̃i ∀i ∈ {0, 1}; sync;
16: Delete the eight temporary matrices;

C(X, V, m,P)

Input: m ×m matrices X ≡ x[I, J] and V ≡ x[J, J], with
I, J intervals in [0, n) and I∩J = ∅; set P of consecutive
PEs assigned to C.

Output: execution of all updates in T = Σf ∩ (I × J × J).
1: if T = ∅ then return; if m = 1 or |P| = 1 then Solve

the problem sequentially with I-GEP and return;
2: Let P0 and P1 be the partition of P where each set

contains |P|/2 consecutive numbered PEs;
3: Allocate space for eight m/2 × m/2 matrices X̃i, Ui,

Vi, and Wi for 0 ≤ i ≤ 1 in such a way that X̃i, Ui,
Vi and Wi are evenly distributed in row-major among
min{|P|/2, m2/4} PEs of Pi;

4: X̃i ← Xi,0, Vi ← V0,0 ∀i ∈ {0, 1}; sync;
5: in parallel: C(X̃i, Vi, m/2,Pi) ∀i ∈ {0, 1}; sync;
6: Xi,0 ← X̃i ∀i ∈ {0, 1}; sync;
7: X̃i ← Xi,1, Ui ← Xi,0, Vi ← V0,1, Wi ← V0,0 ∀i ∈
{0, 1}; sync;

8: in parallel: D∗(X̃i, Ui, Vi, Wi, m/2,Pi) ∀i ∈ {0, 1};
9: Xi,1 ← X̃i ∀i ∈ {0, 1}; sync;
10: X̃i ← Xi,1, Vi ← V1,1 ∀i ∈ {0, 1}; sync;
11: in parallel: C(X̃i, Vi, m/2,Pi) ∀i ∈ {0, 1};
12: Xi,1 ← X̃i ∀i ∈ {0, 1}; sync;
13: X̃i ← Xi,0, Ui ← Xi,1; Vi ← V1,0, Wi ← V1,1 ∀i ∈
{0, 1}; sync;

14: in parallel: D∗(X̃i, Ui, Vi, Wi, m/2,Pi) ∀i ∈ {0, 1};
15: Xi,0 ← X̃i ∀i ∈ {0, 1}; sync;
16: Delete the eight temporary matrices;

40

