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MapReduce
● Introduced in [Dean & Ghemawat, OSDI 2004]

● Programming paradigm for large data sets

● Typically used on clusters of commodity 
computers

● Widely used in many scenarios: log processing, 
data-mining, scientific computations,...



MapReduce (2)
● Eases programmer tasks

– The runtime system manages low-level details

– Focus on the problem, not on the platform

● Inspired by functional programming

● Algorithm is a sequence of rounds
– Map/Reduce functions

–



A MapReduce round
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Previous work

● Modeling efforts 
– [Feldman et al, SODA 2008]

– [Karloff et al, SODA 2010]

– [Goodrich et al, ISAAC 2011]

● Algorithms
– Graph problems, e.g. [Suri et al, WWW 2011][Lattanzi 

et al, SPAA 2011]

– Clustering, e.g. [Ene et al, KDD 2011]



Our results

1. Computational model for MapReduce
– Overcomes some limitations of previous models

– Two parameters describing the local and aggregate 
space constraints

2. Algorithms for sparse/dense matrix 
multiplication

– Tradeoffs between performance and space 
parameters

3. Applications based on matrix multiplication
– Matrix inversion and matching



The MR(m,M) model

● Based on [Karloff et al, SODA 2010]

● Clear separation between model and underlying 
infrastructure

● Maintains functional flavor

● No need to distinguish between mappers and 
reducers

● An MR algorithm is a sequence of rounds



An MR round
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Tradeoffs
● Complexity measure: number of rounds

– Rationale: shuffling is the expensive operation

● Parameters m and M:
– m: max reducer size (limits the number of pairs 

received by a reducer)

– M: max amount of total space (max number of pairs in 
a round)

– Allow for a flexible use of parallelism: e.g., M/m 
reducers of size m, or M reducers of size O(1)

● We aim at deriving tradeoffs between space and 
number of rounds



Matrix multiplication on MR

● Lower and upper bounds for
– Dense-dense matrix multiplication

– Spare-sparse matrix multiplication 
● three variants (D1, D2, R1)
● Estimating density of product matrix

– Sparse-dense matrix multiplication

● Optimal space-round tradeoffs in many cases



Notation

● A, B, C=AxB: matrices of size                  

● Divide into submatrices of size
– Partition the (n/m)3/2 multiplications into (n/m)1/2 groups

– Each submatrix appears once in each group

● n: number of nonzero entries in A and B
● o: number of nonzero entries in C (not known!) 

n x n

m x m



Dense-dense case

● Each group requires space 3n 
● In each round: compute multiplications within 

M/3n  groups
● Number of rounds

● Constant number of rounds if m=poly(n) and 

O  n3 /2

Mm
logmn

M=Ω n3/2
/m



Sparse-sparse: Deterministic D1

● Column-row product: compute all nonzero 
products between the i-th column of A and i-th 
row of B (nonzero products could be < n)

● Compute the      column-row products into phases
● In each phase:

– number of column-row products in the phase 
computed via prefix-sum 

– no more than M nonzero products

n



Sparse-sparse: Deterministic D1 (2)

● Number of rounds

● Constant number of rounds if m=poly(n) and M 
sufficiently large

● Extends to the sparse-dense case
● Inefficient use of reducer space m 

O  nminn ,n
M

logmn 



Sparse-sparse: Deterministic  D2
● Clever implementation of dense-dense algorithm 

leveraging on the sparsity 
● Number of groups in each phase computed 

through a prefix sum based on the space 
requirements of involved submatrices

● Number of rounds

● Constant round complexity if m=poly(n), M 
sufficiently large

O  non

M m
logmn 



Sparse-sparse: Randomized  R3

● D2 can be improved if o is known 
– Avoid prefix sums by processing M/(n+o) groups per 

phase

● An approximation to o is given by a randomized 
algorithm

● Number of rounds O  non

M m
logmn 



Density of product matrix
● We use streaming sketches [Bar-Yossef, 

RANDOM 2002]
– Data-structure for computing number of distinct values 

in a stream with small space

● Size of output matrix:
– For each nonzero product, assign to pair (a

ik
,b

kj
) the 

value (i,j)

– Number of nonzero entries in C = number of distinct 
values (using sketches)



Lower bounds

● Only semiring operations (no Strassen) 
● Matrices of size 
● n nonzero entries per matrix 
● Number of rounds (based on [Hong & Kung, 

STOC 81])

● Constant rounds → data replication

n x n

Ω  nmin n ,n

M m
logmn 



Applications
● We use dense-dense matrix multiplication for: 

– Inverse of a triangular matrix in constant rounds

– Inverse of a general matrix in O(log n) rounds

– Approximate inverse of a general matrix in O(log n) 
rounds (and less space)

– Perfect matching in O(log n) rounds



Conclusion

● Our results provide evidence that nontrivial 
tradeoffs can be exercised between space 
requirement and performance

● Future work:
– Tradeoffs for other problems, e.g. graphs, data-mining

– Experimental evaluation of the model and algorithms



Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

