
Space-Round Tradeoffs
for MapReduce Computations

A. Pietracaprina, G. Pucci,
F. Silvestri

M. Riondato, E. Upfal

MapReduce
● Introduced in [Dean & Ghemawat, OSDI 2004]

● Programming paradigm for large data sets

● Typically used on clusters of commodity
computers

● Widely used in many scenarios: log processing,
data-mining, scientific computations,...

MapReduce (2)
● Eases programmer tasks

– The runtime system manages low-level details

– Focus on the problem, not on the platform

● Inspired by functional programming

● Algorithm is a sequence of rounds
– Map/Reduce functions

–

A MapReduce round

(k
1
, v

1
)

(k
2
, v

2
)

(k
1
, v

1
) Mapper

(k
2
, v

2
) Mapper Ø

(k
1
, v

3
)

(k
2
, v

1
)

(k
3
, v

4
)

(k
1
, v

3
) Mapper

(k
1
, v

2
)(k

3
, v

1
) Mapper

Reducer key k
1

Reducer key k
2

Reducer key k
3

(k
1
, v

1
)

(k
2
, v

2
)

(k
1
, v

3
)

(k
3
, v

1
)

Shuffling

Previous work

● Modeling efforts
– [Feldman et al, SODA 2008]

– [Karloff et al, SODA 2010]

– [Goodrich et al, ISAAC 2011]

● Algorithms
– Graph problems, e.g. [Suri et al, WWW 2011][Lattanzi

et al, SPAA 2011]

– Clustering, e.g. [Ene et al, KDD 2011]

Our results

1. Computational model for MapReduce
– Overcomes some limitations of previous models

– Two parameters describing the local and aggregate
space constraints

2. Algorithms for sparse/dense matrix
multiplication

– Tradeoffs between performance and space
parameters

3. Applications based on matrix multiplication
– Matrix inversion and matching

The MR(m,M) model

● Based on [Karloff et al, SODA 2010]

● Clear separation between model and underlying
infrastructure

● Maintains functional flavor

● No need to distinguish between mappers and
reducers

● An MR algorithm is a sequence of rounds

An MR round

Reducer key k
1

Reducer key k
2

Reducer key k
3

(k
1
, v

1
)

(k
2
, v

2
)

(k
1
, v

3
)

(k
2
, v

1
)

(k
3
, v

4
)

(k
1
, v

2
)

(k
1
, v

2
)

(k
3
, v

2
)

(k
1
, v

1
)

(k
2
, v

2
)

(k
2
,v

1
)

(k
3
, v

4
)

(k
1
, v

2
)

(k
1
, v

2
)

(k
3
, v

2
)

Tradeoffs
● Complexity measure: number of rounds

– Rationale: shuffling is the expensive operation

● Parameters m and M:
– m: max reducer size (limits the number of pairs

received by a reducer)

– M: max amount of total space (max number of pairs in
a round)

– Allow for a flexible use of parallelism: e.g., M/m
reducers of size m, or M reducers of size O(1)

● We aim at deriving tradeoffs between space and
number of rounds

Matrix multiplication on MR

● Lower and upper bounds for
– Dense-dense matrix multiplication

– Spare-sparse matrix multiplication
● three variants (D1, D2, R1)
● Estimating density of product matrix

– Sparse-dense matrix multiplication

● Optimal space-round tradeoffs in many cases

Notation

● A, B, C=AxB: matrices of size

● Divide into submatrices of size
– Partition the (n/m)3/2 multiplications into (n/m)1/2 groups

– Each submatrix appears once in each group

● n: number of nonzero entries in A and B
● o: number of nonzero entries in C (not known!)

n x n

m x m

Dense-dense case

● Each group requires space 3n
● In each round: compute multiplications within

M/3n groups
● Number of rounds

● Constant number of rounds if m=poly(n) and

O  n3 /2

Mm
logmn

M=Ω n3/2
/m

Sparse-sparse: Deterministic D1

● Column-row product: compute all nonzero
products between the i-th column of A and i-th
row of B (nonzero products could be < n)

● Compute the column-row products into phases
● In each phase:

– number of column-row products in the phase
computed via prefix-sum

– no more than M nonzero products

n

Sparse-sparse: Deterministic D1 (2)

● Number of rounds

● Constant number of rounds if m=poly(n) and M
sufficiently large

● Extends to the sparse-dense case
● Inefficient use of reducer space m

O  nminn ,n
M

logmn 

Sparse-sparse: Deterministic D2
● Clever implementation of dense-dense algorithm

leveraging on the sparsity
● Number of groups in each phase computed

through a prefix sum based on the space
requirements of involved submatrices

● Number of rounds

● Constant round complexity if m=poly(n), M
sufficiently large

O  non

M m
logmn 

Sparse-sparse: Randomized R3

● D2 can be improved if o is known
– Avoid prefix sums by processing M/(n+o) groups per

phase

● An approximation to o is given by a randomized
algorithm

● Number of rounds O  non

M m
logmn 

Density of product matrix
● We use streaming sketches [Bar-Yossef,

RANDOM 2002]
– Data-structure for computing number of distinct values

in a stream with small space

● Size of output matrix:
– For each nonzero product, assign to pair (a

ik
,b

kj
) the

value (i,j)

– Number of nonzero entries in C = number of distinct
values (using sketches)

Lower bounds

● Only semiring operations (no Strassen)
● Matrices of size
● n nonzero entries per matrix
● Number of rounds (based on [Hong & Kung,

STOC 81])

● Constant rounds → data replication

n x n

Ω  nmin n ,n

M m
logmn 

Applications
● We use dense-dense matrix multiplication for:

– Inverse of a triangular matrix in constant rounds

– Inverse of a general matrix in O(log n) rounds

– Approximate inverse of a general matrix in O(log n)
rounds (and less space)

– Perfect matching in O(log n) rounds

Conclusion

● Our results provide evidence that nontrivial
tradeoffs can be exercised between space
requirement and performance

● Future work:
– Tradeoffs for other problems, e.g. graphs, data-mining

– Experimental evaluation of the model and algorithms

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

