
THE INPUT/OUTPUTTHE INPUT/OUTPUT
COMPLEXITY OF TRIANGLE
ENUMERATION

Francesco Silvestri, University of Padova

Joint work with
Rasmus Pagh IT University of CopenhagenRasmus Pagh, IT University of Copenhagen

PODS 2014, Snowbird, Utah, US

O iOverview
• Introduction• Introduction

• Triangles in graphs: Counting vs listing vs enumerating
• Model of computation
• Previous results• Previous results

• Cache-aware algorithm
• New randomized algorithm
• Derandomization

• Cache-oblivious algorithm
• Recursive approach
• Randomized algorithmRandomized algorithm

• Lower bound
“Best case” lower bound nearly matching the upper bounds• Best-case lower bound nearly matching the upper bounds

Sales Brand
person
H. Simpson DUFF
W C t ACMEW. Coyote ACME
W. Coyote DUFF

Sales
person

Product type

H. Simpson Beer

Product type Brand

Beer DUFF H. Simpson Beer
W. Coyote Beer
W. Coyote TNT

TNT ACME

Homer Duff beer

Coyote ACME TNTCoyote ACME TNT

S bl i h i lSome problems with triangles
• Counting triangles

• Compute the (approximate) number of triangles in a graph
Fast matrix multiplication sampling• Fast matrix multiplication, sampling…

• Listing trianglesListing triangles
• Generate and store all triangles (write to external memory)

• Enumerating triangles
• Generate all triangles in a graph
• Do not store them (i.e., write them to external memory)

E i li iEnumerating vs listing
• Almost no difference in RAM model

• Cost of generating a triangle = cost of storing a triangle

• Huge difference in the I/O model
• Memory may not contain all T triangles: I/OsΩ T / B()• Memory may not contain all T triangles: I/Os
• Worst case I/Os (with -clique)
• Larger than the cost of generating triangles

Ω T / B()
Ω E E / B() E

Ω E E / B M()()
• In many cases, we don’t need to store the output

()()

• Example in database systems
• Pipeline operations may not require storing intermediate results

M hi hMemory hierarchy
• Input graphs are usually big; do not fit into internal

memory.
U I/O d l d l [Vitt 2008] (t l)• Use I/O model model [Vitter 2008] (external memory)

• Complexity of an algorithm: number of I/Os

CPU

Memory of size M Block transfer size B

• Cache-oblivious algorithm:
Code does not use memory parameters M and B.

P i kPrevious work
• All papers target the listing problem

E E log E / B()⎛
⎜

⎞
⎟• [Dementiev, PhD 2007] O

E E logM /B E / B()
B⎝

⎜⎜
⎠
⎟⎟

E E⎛ ⎞
Do not exploit
memory size M

• [Menegola, TR 2010] O E+ E E
B

⎛

⎝
⎜

⎞

⎠
⎟

y

E2 T⎛ ⎞
• [Hu, Tao, and Chung, SIGMOD 2013]

P id t l b d

O E
BM

+ T
B

⎛

⎝
⎜

⎞

⎠
⎟

Ω E E + T⎛
⎜

⎞
⎟• Provide worst-case lower bound Ω

B M
+

B⎝
⎜

⎠
⎟

Previous work: [Hu, Tao, Chung 2013]

1. Split edges into chunks of M edges
• O(E/M) chunks

F h h k Edge in

u

v

2. For each chunk:
1. Load the chunk in memory
2 Find all triangles with an edge in the chunk

Edge in
the chunk

w2. Find all triangles with an edge in the chunk
• Requires scanning the adjacency list of each vertex v

E2 T⎛ ⎞

w

• Total I/O complexity: O E2

BM
+ T

B
⎛

⎝
⎜

⎞

⎠
⎟

O lOur results
• I/O complexity given in expectation

EE ⎟
⎞

⎜
⎛

• Better cache-aware algorithm using EMif
MB
EEO ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

• Derandomization of the cache-aware algorithm

• Cache-oblivious version with same complexity.

T T 2/3⎛ ⎞
• Best-case lower bound of Ω T

B M
+ T 2/3

B
⎛

⎝
⎜

⎞

⎠
⎟

S iSome notation
• Vertices are ordered (e g by ID)• Vertices are ordered (e.g. by ID)
• Triangle represented by triplet (v1, v2, v3) where v1 < v2 < v3

• Def: A triangle (v1, v2, v3) is (c1, c2, c3)-colored if:
• v1 has color c1, v2 has color c2, v3 has color c31 1 2 2 3 3

• Def: (c1, c2, c3)-enumeration problem:
fi d ll () l d t i l• find all (c1, c2, c3)-colored triangles

• Input: three edge sets• Input: three edge sets
Ec1, c2: edges with colors c1, c2 , Ec1, c3: edges with colors c1, c3, Ec2, c3:
edges with colors c2, c3,

C h l i hCache-aware algorithm
1. Randomly color each vertex independently and

uniformly with colors
A triangle can be colored in c3 ways

c= E / M
• A triangle can be colored in c3 ways
• 4-wise independent hash function suffices

1. For each color triplet (c1, c2, c3)
1. Consider edge sets compatible with coloring: Ec1, c2, Ec1, c3, Ec2, c3.

2. Solve the (c1, c2, c3)-enumeration problem with the [Hu, Tao,
Chung 2013] algorithm.

Three colors: RED, GREEN, BLUE

16
2

4

0

3

1312
3

111

5

10
14

7
9

15

8

6

Looking for triangles (v1, v2, v3) colors RED, GREEN, BLUE

I/O C l i i i iI/O Complexity, intuition
3 E E

• Number of subproblems c3 = E
M

E
M

• For each (c1, c2, c3), we need: Ec1, c2 , Ec1, c3 , Ec2, c3

⎡ ⎤• Expected subproblem size: E Ec1,c2
+Ec1,c3

+Ec2,c3
⎡⎣ ⎤⎦= 3M

E +E +E()2⎛
⎜

⎞
⎟• Expected I/O of a subproblem

E E⎛ ⎞

O
Ec1,c2

+Ec1,c3
+Ec2 ,c3()

BM⎝

⎜
⎜

⎠

⎟
⎟
=O M / B()

• Total expected I/O: O E
B

E
M

⎛

⎝
⎜

⎞

⎠
⎟

Does
not Except if each
hold!

p
vertex has degree
< EM

Hi h d iHigh degree vertices

• Vertex v is high degree if deg(v) ≥ EM

• At most high degree vertices2 E
M

• Γ(v) : adjacency list of vertex v

Reporting triangles containing a high degree vertex:

1. Sort edges by small vertex
2. Remove edges where the small vertex is not in Γ(v)
3. Sort remaining edges by large vertex
4. Remove edges where the large vertex is not in Γ(v)
5 E h i i d k i l i h5. Each remaining edge makes a triangle with v

I/O C l iI/O Complexity
• High degree vertices:

O E E logM /B(E / B)
⎛
⎜

⎞
⎟ =O E E⎛

⎜
⎞
⎟ if M ≥ E1/2O

M B
logM /B(E / B)

⎝
⎜

⎠
⎟ O

B M⎝
⎜

⎠
⎟ if M ≥ E

• Random coloring:

O E E⎛
⎜

⎞
⎟O

B M⎝
⎜

⎠
⎟

E E⎛
⎜

⎞
⎟• Total optimal expected I/O complexity: O E

B
E
M

⎛

⎝
⎜

⎞

⎠
⎟

D d i iDerandomization
• We use a small family of 4-wise independent functions

[Alon et al., 1992]

• We fix the color of each vertex in log (E/M) iterations
One bit in each iteration• One bit in each iteration

In each iteration we compute how well each function• In each iteration, we compute how well each function
balances subproblems
• According to some “cost” functionAccording to some cost function
• It can be proved that a “good” function exists in the family

C h bli i l i h idCache-oblivious algorithm: idea

• Problems:
• To identify “large degree” vertices, need M and B.
• The number of colors depends on M and B.

• Solution sketch for (c1, c2, c3)-enumeration
• Remove “extremely large degree” vertices incident to a constantRemove extremely large degree vertices incident to a constant

fraction of the edges.
• Randomly color vertexes using 2 colors.
• Recurse on 8 coloring problems (each of about 1/4 size).

I/O lower boundI/O lower bound
• Assumption: information on edges/vertices are• Assumption: information on edges/vertices are

indivisible
• For enumerating a triangle we need all its edges in memory at the

tisame time

• Best-case lower bound: applies to each input with T• Best-case lower bound: applies to each input with T
triangles, and every possible algorithm execution

I/OT⎛
⎜

⎞
⎟ I/Os

H d t h (li) W ill hT Ω E3/2()E

Ω T
B M

⎛
⎝
⎜

⎞
⎠
⎟

• Hardest graph (-clique), . We will show:

I/OsΩ E3/2⎛
⎜

⎞
⎟

T =Ω E3/2()E

I/OsΩ
B M⎝

⎜
⎠
⎟

R i i I/O i dReorganizing I/Os in rounds
• A: execution of an algorithm enumerating T triangles with

M memory

• A’: simulation of A on a memory of size 2M so that
A’ can be decomposed in ro nds• A’ can be decomposed in rounds

• Each round starts with M/B inputs and ends with M/B outputs
• Same asymptotic I/O complexity as ASame asymptotic I/O complexity as A

• Ideas:
• Half of the memory simulates the memory used by A
• Half of the memory is used as buffer for I/Os

I/O l b dI/O lower bound, cont.
• How many triangles can we generate with M edges?
• Answer:

O(M M)O(M M)
• Triangles reported in each round:• Triangles reported in each round:

• I/Os:
• New triangles O M M()

2M / B
g

• I/O lower bound

()
Ω T

B M
⎛
⎝
⎜

⎞
⎠
⎟

B M⎝
⎜

⎠
⎟

C l iConclusion
• Optimal (in expectation) enumeration of triangles in

external memory
Aware and oblivious algorithms• Aware and oblivious algorithms

• The algorithm can be generalized to the extraction of• The algorithm can be generalized to the extraction of
other subgraphs (e.g., k-cliques) and parallelized.

• Open problem: can we derive output sensitive algorithms
in the I/O model?in the I/O model?

Th k !Thank you!

