## On The Limits Of Cache Oblivious Matrix Transposition

**ΙΕΟΚΜΔΙ** 

ENGINEERING

**UNIVERSITY OF PADOVA** 

#### Francesco Silvestri

francesco.silvestri@dei.unipd.it



- Models for memory hierarchy;
- Statement of the problem;
- Negative result on optimal cache-oblivious matrix transposition;
- Conclusions.

### The memory hierarchy



#### Locality

- In good algorithms:
  - the same data are frequently reused within a short time interval

#### **Temporal Locality of Reference**

 data stored at consecutive addresses are involved in consecutive operations

#### **Spatial Locality of Reference**

Many models account for these two properties.

#### Models

- External Memory (EM) [Aggarwal, Vitter, 1988]
  - Represents DISK-RAM hierarchy.
  - Arbitrarily large disk, RAM of *M* words.
  - Data are transferred in blocks of B consecutive words.
  - Block transfers are explicitly controlled by the program.
  - *I/O Complexity*: number of accesses to disk.

#### Models (cont'd)

- Ideal Cache (IC) [Frigo et al., 1999]
  - Represents RAM-CACHE hierarchy.
  - Arbitrarily large RAM, cache of *M* words.
  - Cache:
    - Organized into *M*/*B* blocks of *B* words,
    - Fully associative.
  - Data are transferred in blocks of *B* consecutive words.
  - Block transfers are automatically controlled by hardware:
    - Optimal offline strategy for block replacement.
    - Cache Complexity: number of accesses to RAM

### Cache-Obliviousness

- An algorithm for IC is *cache-oblivious* (CO) if its specification is <u>independent</u> of the two parameters *M* and *B*.
- An algorithm is *cache-aware* (CA) otherwise.
- CO algorithms adapt automatically to the actual platform in which they run:
  - Desirable in the overlay computing scenario
- Optimal CO algorithm: best cache complexity on each IC(*M*,*B*) model.

#### Tall cache

 Many optimal CO algorithms in literature. Most of them require the tall cache assumption (TCA):







#### Does every problem admit an optimal CO algorithm which does not require the TCA?

#### Known results

• [Brodal, Fagerberg, 2003]:

- There is no optimal CO algorithm for the sorting problem without the TCA;
- There is no optimal CO algorithm for general permutations even with the TCA.
- [Bilardi, Peserico, 2001]:
  - Similar results in a model without spatial locality (HMM), in the context of DAG computations.



#### There is no optimal cache-oblivious algorithm for matrix transposition without the TCA

Main ingredient: exploit EM lower bound arguments through a simulation technique.

### Matrix Transposition (MT)

- Input: an  $N^{1/2} \times N^{1/2}$  matrix A in row major
- Output: A<sup>T</sup> in row major
- Cache (I/O) complexity:

$$\Omega\left(\frac{N\log M}{B\log\left(1+\frac{M}{B}\right)}\right)$$

- There is an optimal CA algorithm ∀ IC(M,B) [Aggarwal, Vitter, 1988].
- There is an optimal CO algorithm ∀ IC(M,B) that satisfies the TCA [Frigo et al., 1999].

### Matrix transposition (cont'd)

- $\mathcal{A}$  is an <u>optimal</u> CO algorithm for MT without TCA.
- $C_1$ : tall IC( $M, B_1$ ),  $C_2$ : short IC( $M, B_2$ ).
  - $t_1$ ,  $t_2$ : (optimal) cache complexities of  $\mathcal{A}$  on  $C_1$  and  $C_2$ , respectively.
  - Sequence of operations does not change.
  - Sequence of I/Os could be different.
  - When an operation requires the word x, the  $B_1$ block and  $B_2$ -block containing x must be in  $C_1$ and  $C_2$ , respectively.

### The simulation technique

- $\mathcal{A}$ ': new MT algorithm for EM(2M,  $B_2$ ).
- $\mathcal{A}$ ' simulates the executions of  $\mathcal{A}$  on both  $C_1$  and  $C_2$  at the same time:
  - Divide the memory in two segments  $\mathcal{M}_1$  and  $\mathcal{M}_2$ :
    - $\mathcal{M}_1$  represents  $C_1$ ,  $\mathcal{M}_2$  represents  $C_2$ .
  - Operations on  $\mathcal{M}_1$ .
  - I/Os on  $\mathcal{M}_2$ .

#### The simulation technique (cont'd)

EM(*2M*, *B*<sub>2</sub>)



- I/Os of  $B_2$ -blocks in  $C_2$ : I/Os between  $\mathcal{M}_2$  and the disk.
- I/Os of  $B_1$ -blocks in  $C_1$ : words exchanged between  $\mathcal{M}_2$  and  $\mathcal{M}_1$ .

#### The new algorithm

• The I/O complexity of  $\mathcal{A}$ ' is  $T=\Theta(t_2)$ .

• 
$$K = \frac{t_1 B_1}{B_2}$$

• Crux: change  $\mathcal{A}$ ' in such a way that O(K)words are exchanged between  $\mathcal{M}_1$  and a  $B_2$ block in  $\mathcal{M}_2$ , before this block is removed from  $\mathcal{M}_2$ .

### **Potential function**

- Adaptation of the argument used in [Aggarwal, Vitter, 1988] to lower bound the I/Os of A'.
- Potential function after t I/Os (POT(t))
  - It measures the progress of an MT algorithm for  $EM(2M, B_2)$ .
  - $POT(0) = 0; POT(T) = N \log B_2$
- The rate of *POT* is limited by the amount of words exchanged between  $\mathcal{M}_1$  and  $\mathcal{M}_2$ :

 $\nabla POT = POT(t) - POT(t-1) = O\left(K \log \frac{M}{K}\right)$ 

### The grand finale

- $T=\Theta(t_2)$ , then  $(\exists \text{ a constant } 0 < \gamma < 1)$ :  $T \cdot \nabla POT \ge POT(T) \Longrightarrow t_2 \in \Omega\left(N\frac{B_2^{\gamma}}{M}\right)$
- If  $B_2 = \Theta(M)$ :  $t_2 \in \Omega\left(\frac{N}{M^{1-\gamma}}\right) \in \omega\left(N\frac{\log M}{M}\right)$  Lower bound

#### A contradiction:

# There is no optimal cache-oblivious algorithm for MT without the TCA

### Conclusions

- The TCA is a reasonable assumption, and we <u>do</u> need it for CO optimality for certain problems:
  - Sorting  $\rightarrow$  Brodal and Fagerberg, 2003
  - Matrix Transposition  $\rightarrow$  us
  - Matrix Multiplication  $\rightarrow$  ?
  - FFT  $\rightarrow$  ?



- The simulation technique can be applied to other problems.
- We still don't fully understand WHY the TCA is needed!

# Any questions?



