
Algorithms on Evolving Graphs

Aris Anagnostopoulos
Sapienza University

Rome, Italy
aris@dis.uniroma1.it

Ravi Kumar
Yahoo! Research

Sunnyvale, CA, USA
ravikumar@yahoo-

inc.com

Mohammad Mahdian
Yahoo! Research

Sunnyvale, CA, USA
mahdian@yahoo-inc.com

Eli Upfal
Brown University

Providence, RI, USA
eli@cs.brown.edu

Fabio Vandin
Brown University

Providence, RI, USA
vandinfa@cs.brown.edu

ABSTRACT
Motivated by applications that concern graphs that are evolv-
ing and massive in nature, we define a new general frame-
work for computing with such graphs. In our framework,
the graph changes over time and an algorithm can only track
these changes by explicitly probing the graph. This frame-
work captures the inherent tradeoff between the complexity
of maintaining an up-to-date view of the graph and the qual-
ity of results computed with the available view. We apply
this framework to two classical graph connectivity problems,
namely, path connectivity and minimum spanning trees, and
obtain efficient algorithms.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Computa-
tion on discrete structures; F.1.2 [Computation by Ab-

stract Devices]: Modes of Computation—Probabilistic com-
putation

General Terms
Theory

Keywords
evolving graphs; algorithms; path connectivity; minimum
spanning tree;

1. INTRODUCTION
Graphs are ubiquitous in today’s world. Such graphs

range from social networks to recommendation networks
to communication and information networks to hyperlink-
induced web graphs. Two characteristics common to all of
these graphs make computing with them daunting: their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITCS’12 January 8-10, 2012, Cambridge, Massachussets, USA.
Copyright 2012 ACM 978-1-4503-1115-1 ...$10.00.

evolving and decentralized nature and, often, their scale.
The classical computational paradigm, which assumes a
fixed data as an input to an algorithm that terminates, is
insufficient for many modern data processing needs. Con-
sequently, computational and data models that depart from
the conventional paradigm have been proposed: the data
stream model where the input is given as a stream and the
algorithm does not have access to enough memory to store
the data; the dynamic model where the input changes and
the algorithm, aware of these changes, must be faster than a
naive recomputation; the property testing model where the
algorithm needs to produce the answer after probing a small
portion of the input; and so on.

Unfortunately, none of these models by itself is sufficient
to address all the challenges posed by evolving and massive
graphs. For instance, the dynamic and the data streaming
models assume knowledge of all the changes in the data,
thereby imposing severe restrictions on their capabilities.
The property testing model does not make this assumption,
but it only works on static (i.e., not evolving) input.

Our contributions. To address some of the challenges of
interest that are not captured by the aforementioned mod-
els, we propose a new computational framework on graphs
where the underlying graph changes over time and an algo-
rithm can only observe these changes by probing the graph in
a limited way. This evolving graph framework is inspired by
the work of Anagnostopoulos et al. [2], who studied sorting
and selection problems in an evolving (scalar) data setting.
In our framework, the graph changes over time without no-
tifying the algorithm and therefore the algorithm needs to
periodically probe the graph to learn about new changes
and update its solution accordingly. The fact that the al-
gorithm is unaware of the changes in the input makes this
framework different from the previous work on dynamic al-
gorithms, and suitable for modeling real-world settings such
as the following: the computations of search engines on the
web graph, where the web graph is continually changing
and the search engine can only learn about these changes
by periodically crawling the web pages; the computation by
a third-party vendor on social networks such as Twitter or
Facebook, where the network is constantly evolving and the
vendor can access the network only through a rate-limited
oracle (i.e., an API).

We focus on two basic graph connectivity questions in this
framework—path connectivity and finding minimum span-

ning trees (MST). In the path connectivity problem, the set
of edges of the graph changes in time, and we obtain an
algorithm that outputs an invalid path at each time with
probability O((log n)/n); the corresponding lower bound is

Ω
(

logn
n(log logn)2

)

. In the weighted MST problem, the order

of weights between the edges changes in time and we ob-
tain an algorithm that outputs a tree with sum of ordinal
weights that is within distance O(log2 n) from the optimal;
we generalize our MST algorithm to general matroid set-
tings, although with a loss in the bound achievable by the
algorithm. The positive results we obtain for these problems
suggest that our framework, while capturing the evolving
nature of graphs, remains amenable to algorithmic develop-
ment. We also believe that our techniques would be useful
in more general settings of graph evolution.

1.1 Related Work
Models for dealing with dynamic graphs have been exten-

sively studied in the algorithmic community from various
points of view. However, none of these models captures the
three crucial aspects of the scenario depicted earlier: the
slow evolution of the underlying graph, learning about the
changes only through probing a limited portion of the graph,
and the observation of the system for an infinite (or very
long) amount of time. We now discuss some of the models
most related to ours.1

(i) Dynamic graph model [5]. In this setting, a graph
changes over time and the goal is to keep track of the changes
so as to be able to efficiently answer graph queries. The
main difference is that here when a change is performed to a
graph, the algorithm is notified of the change; instead in our
setting the algorithm does not know the change but it has
to perform queries to learn it. In addition, the expensive
resource in our setting is the number of queries, while we
do not pose any additional restrictions on the time/space
complexity of the algorithms.

(ii) Data streams [8]. Here the algorithm observes a
sequence of events (e.g., edge addition or deletion) and
has to maintain an approximate solution. Computational
resources, typically space, are limited and the algorithm
should maintain an approximate solution under these lim-
itations, while being able to observe the entire stream of
changes. In contrast, our limited resource is the number of
data probes.

(iii) Property testing [10, 11]. Here the goal is to find
whether a graph has some property or is far from satisfying
the property using a limited number of queries. Unlike our
setting, this model is static. Furthermore, in our model the
underlying problem does not need to be a decision problem
and there are no restrictions placed on the input (such that
if the structure does not satisfy the property then it is far
from satisfying it).

(iv) Multi-armed–bandit model [7]. In the standard multi-
armed bandit setting there are k slot machines (one-armed
bandits) and pulling a lever in a slot machine gives a re-
ward, which depends on the machine, and reveals informa-
tion about the machine. The objective is to select the ma-
chines to query so as to maximize the total reward; as in
our case, the number of queries in every time step is lim-
ited. In particular, similar tradeoffs with those in our set-

1As mentioned earlier, our evolving graph framework is in-
spired by the model in [2], which dealt with scalar data.

ting are studied in [13], where the distribution of the rewards
changes over time. The setting studied in the current pa-
per has a different goal (producing the correct answer every
time, as opposed to maximizing the reward) and works on
an underlying graph structure.

(v) Parametric optimization and kinetic problems [3, 1].
In the parametric optimization model, the edge weights are
known continuous functions of a real parameter λ (often
referred to as “time”), and the goal is to identify how the
solution changes as λ varies. A kinetic problem combines
parametric optimizations and dynamic data structures for
insertions and deletions. In such a problem, at the begin-
ning a parametric problem of parameter λ is given; as the
time λ progresses, the weight functions change and objects
(e.g., edges) are inserted or deleted. The goal is to efficiently
maintain the optimal solution at each point in time. For
both settings the main difference with our model is that at
each point in time the algorithm is notified of the changes,
while in our setting probes are required to learn the changes.
Moreover, the resource of interest in our model is the number
of probes, without additional restrictions on the time/space
complexity of the algorithms.

2. MODEL
We follow the general framework defined in [2] for algo-

rithms on dynamic data. In the case of evolving graphs, this
model can be described as follows. The time is assumed to
proceed in discrete steps, numbered by positive integers. At
each time step t, the data is given by a (possibly weighted)
graph Gt. The data is changing gradually, i.e., the graph
Gt+1 is obtained from Gt by a small random change.2 At
each time step t, the algorithm is allowed to probe a small
portion of the graph Gt, and then must output a solution for
the problem under consideration. We would like this solu-
tion to be close to the“correct” solution for the graph Gt. In
this paper we do not impose any constraint on the amount
of memory the algorithm maintains or the running time of
the algorithm, although all of the algorithms we present are
quite efficient with respect to these factors.

To complete the definition of the model for a specific prob-
lem, we need to fix three aspects: how the graph evolves,
what types of probe the algorithm is allowed to perform,
and how we measure the quality of the solution.

(i) Change. To keep the model simple, we assume that the
number of nodes and edges of the graph and also the labels
of the nodes remain fixed. Let V denote the node set of Gt,
Et denote the edge set of Gt, n = |V |, and m = |Et|. The
manner in which the graph evolves depends on whether the
graph is unweighted or weighted.

For unweighted graphs, the edges change by a random
swap, i.e., by removing a random edge of the graph and
adding an edge between a random pair of nodes. More
formally, let (u, v) ∈ Et be a uniformly chosen edge
and let u′, v′ ∈ V be uniformly chosen nodes such that
(u′, v′) 6∈ Et \ (u, v). In words, (u′, v′) is a randomly se-
lected nonedge—pair of nodes that are not connected. Then,
Et+1 = (Et \ {(u, v)}) ∪ {(u′, v′)}.

For weighted graphs, we assume an ordinal model of
change similar to the one in [2]: the edge set is fixed (i.e.,

2It is easy to show trivial lower bounds if the changes are
adversarial; thus, random changes are needed to make the
model interesting.

Et = E for all t), and only the weights change. At each
time step t, the weights of the edges induce an ordering πt

on the edge set E. The ordering πt+1 is obtained from πt

by swapping a random consecutive pair. As argued in [2],
this is perhaps the most natural model for gradual change
with ordinal weights, and as we will see, an ordinal weighted
model is rich enough to capture the evolving MST problem.3

(ii) Probe. For unweighted problems, we allow the algorithm
to perform a node probe in each time step, i.e., query a node
u ∈ V and learn about the set of neighbors of u.4 For
weighted graphs, we allow the algorithm to probe a pair
of edges e, e′ and observe which of these edges has a larger
weight; this is the natural probing model for ordinal weights.

(iii) Quality measure. The benchmarks we use to measure
the quality of the solution depends on the problem. In gen-
eral, for optimization problems, this measure is an indication
of how much the value of the optimal solution differs from
the value produced by the algorithm. This is easy to define
for unweighted problems, but requires some work (see Sec-
tion 4) for ordinal weights. For non-optimization problems,
we measure the quality of the solution by the probability
that it is a valid feasible solution.

In the model described above we assumed that in each
time step, the graph evolves by one random change and the
algorithm can make one probe. A more general model is
to allow the graph to change more rapidly than the prob-
ing rate of the algorithm (i.e., for every probe of the algo-
rithm, the graph undergoes α ≥ 1 changes), or the other
way around. Our evolving MST algorithm is presented in
this more general model and our evolving connectivity algo-
rithm can easily be generalized to constant α.

3. PATH CONNECTIVITY
In this section we consider the basic connectivity ques-

tion in unweighted evolving graphs: given two fixed nodes
S, T ∈ V , designated as the source and the sink respectively,
maintain a path between S and T , assuming one exists. At
each time t, the algorithm must output a path Pt ⊆ V such
that the probability that Pt is not a valid ST -path in Gt is
negligible.

Note that as t → ∞, the distribution of the graph Gt

approaches the distribution of G(n,m), a graph chosen uni-
formly at random from all graphs with n nodes and m edges.
Thus, if m = o(n lnn), then there is a non-trivial prob-
ability that there is no ST -path in the graph. Likewise,
if m = ω(n3/2), then the problem becomes easy (either S
and T are connected or they have some common neighbors,
whp), and hence it is easy to discover an ST path. There-
fore, the interesting range of parameters for this problem is
when m = Ω(n lnn) and m = O(n3/2); we assume this5.
For simplicity of exposition, we will assume that the graph
G0 ∼ G(n,m) so that the graph Gt ∼ G(n,m), and for con-
venience we assume that at time t = 1 our algorithm knows

3Intuitively, this is because the MST can be computed using
only pairwise comparisons of the weights of the edges.
4An alternative probing model is edge probing: given a pair
of nodes u and v, the algorithm learns whether there is an
edge between u and v or not. However, this model seems
more appropriate in a regime where the graph Gt has a
positive density (i.e., m = Θ(n2)). Many of our results can
be adapted to this probing model for dense graphs.
5In particular we assume m ≥ cn lnn for a constant c > 1.

a valid ST-path (if at least one exists); otherwise our re-
sults hold for all t large enough. (In Appendix A, we show
that the convergence to G(n,m) is fast and thus our results
essentially hold with any starting configuration.)

We continue this section by giving a simple algorithm
based on iteratively finding a path between S and T . We
then improve upon this by keeping track of two disjoint
paths and using the second path as the emergency output at
times when the first path is found to be invalid. One might
wonder if it is possible to improve even further by taking
three or more disjoint paths. However, as we will show,
the bound obtained by the two-path algorithm is asymptot-
ically close to optimal. We finish by generalizing our results
to multiple source-destination pairs.

3.1 The One-Path Algorithm
We start with a simple algorithm that works in phases:

iteratively find a path between S and T , and at any moment,
output the path that the last finished run of the path-finding
algorithm has produced.

In each phase we execute the following path-finding algo-
rithm. It first grows a ball BS around S as follows. Initially,
BS = {S} and S is marked unvisited. In every step, the
algorithm picks an unvisited node in BS closest to S, marks
it as visited, and adds all its neighbors to BS using a node
probe; any new node added to BS will be marked as unvis-
ited. The algorithm stops after R = d

√

c0n/ lnne steps for
a constant c0, i.e., when BS contains R visited nodes. Next,
the algorithm grows another set BT defined similarly, but
starting from T instead of S. Again, this set is grown until
there are R visited nodes in BT . If at this point, the algo-
rithm finds a node that is in common between BS and BT ,
it outputs the path defined through this node; otherwise, it
declares that no path between S and T exists.

Intuitively, the graph should behave close to a G(n,m)
random graph during the entire period that the algorithm
is executed. In the next lemma we show that this is indeed
the case, from which it follows (whp) the algorithm described
manages to find a path between S and T .

Lemma 1. With probability at least 1−O
(

(n lnn)−1/2
)

,

there exists at least one path between S and T at the end of
the execution of the algorithm, and the algorithm described
succeeds in finding it.

Proof. First note that since m = Ω(n lnn), by a Cher-
noff bound, at a given time point of the algorithm every
node will have degree at least c lnn with probability at least
1 − n−4 for a sufficiently large constant c. By applying a
union bound, we obtain that with probability at least 1−n−3

each node will have degree at least c lnn during the entire
algorithm execution. Similarly, the degree of each node is at
most O(m/n) = O(

√
n) whp.

Fix a time point when the algorithm has constructed a set
BS . Since it stops after R = Θ(

√

n/ lnn) steps, and since
each degree is O(

√
n) whp., we have that whp.

|BS | = O(R
√
n) = O(n/

√
lnn).

In the next step a node v ∈ BS is selected and its neighbors
are added into BS. Whp. v has at least c lnn neighbors,
distributed uniformly at random in V , and the expected
number of neighbors that are not currently in BS is at least

c lnn · n−O(n/
√
lnn)

n
.

By a Chernoff bound, with probability at least 1− n−3, the
number of neighbors not in BS is at least c′ lnn, for some
constant c′. Therefore, the set BS will grow by c′ lnn nodes.
Hence, when the process finishes after R steps we have that
|BS| ≥ c′′R lnn, for some constant c′′.

We apply the same analysis for the set BT , with the only
difference that we ignore the nodes in both BS and BT when
we study the growth of BT . The same analysis gives that
the size of BT is also whp. at least Ω(R lnn). Note that
the number of node probes made by the algorithm is 2R =
O(

√

n/ lnn).
We analyze the probability that the algorithm fails to find

a path as follows: this probability is bounded by the proba-
bility that there is no edge between nodes in BS and visited
nodes in BT . Whp., each visited node v in BT has at least
c′ lnn neighbors, distributed uniformly, thus the probability
that no edge exists between v and BS is upper bounded by

(

1− c′′R lnn

n

)c′ lnn

≤ e−c′c′′R ln2 n/n.

Hence, the probability that no edge exists between a visited
node in BT and BS is at most

e−c′c′′R2 ln2 n/n = e−c′c′′ lnn.

Therefore, with high probability the algorithm succeeds in
finding a plausible path (we call it plausible since some of
its edges might have been removed during the execution of
the algorithm, an event that as we show next is highly im-
probable).

The probability that the path computed at the end of the
execution (call this time t) is still valid is at least the prob-
ability that none of the edges of the path is removed at any
time step after it was observed by the algorithm until time
t. There are at most 2R such time steps. Also, notice that
BS and BT have both diameter O(lnn), thus the length of
the path is at most O(lnn). Therefore, the probability of
getting an invalid path at time t is at most the probability
that at least one of the O(2R lnn) = O(

√
n lnn) bad events

of the form “edge e is removed at time x” occurs. The prob-
ability of each such event is 1/m, and hence by the union
bound, the probability of getting an invalid path at time t
is at most O(

√
n lnn/m) = O((n lnn)−1/2).

Theorem 2. There is an algorithm for ST -path connec-
tivity on evolving graphs that guarantees that for every t, the
probability that the path output by the algorithm at time t is
invalid is at most O((n lnn)−1/2).

Proof. We use the following algorithm: the time is di-
vided into phases of length 2R. The ith phase starts at time
t = 2Ri+1 and ends at time 2R(i+1). In each phase, we run
the algorithm that we described previously to find a path be-
tween S and T , and at any time step t ∈ [2Ri+1, 2R(i+1)],
we output the path computed in the last phase, that is, at
time 2Ri. This completes the description of the algorithm.

Now, consider a time step t ∈ [2Ri + 1, 2R(i + 1)]. By
Lemma 1, at time 2Ri + 1 the algorithm succeeds in out-
putting a valid path whp. We now analyze the probability
that at this time, the path output by the algorithm is invalid.
We can apply the exact same analysis that we applied in the
end of the proof of Lemma 1 and deduce that the probability
that the path found at time step 2Ri + 1 is valid at time t
is at least 1−O((n lnn)−1/2).

3.2 The Two-Path Algorithm
We now give a more sophisticated algorithm that achieves

a guarantee better than the one in the previous section. The
idea is to always keep track of two disjoint paths between
S and T instead of one, using the first path as the primary
solution and the second one as an emergency solution. We
also need to monitor the primary path to discover when it
becomes infeasible. We do this using a time-sharing trick:
in even time steps, we run the algorithm for finding paths
for the next round, while in odd steps, we probe the nodes
of the current primary solution in a round-robin fashion to
discover possible failures. We start by proving a statement
analogous to Lemma 1.

Lemma 3. With probability at least 1 − O
(

(n lnn)−1/2
)

there exists at least one path between S and T at the end of
the execution and the algorithm described succeeds in finding
it.

Proof. The algorithm is similar to the ball-growing algo-
rithm of Lemma 1, except here to ensure finding two disjoint
paths, we first pick two neighbors u1 and u2 of S and two
neighbors v1 and v2 of T . Then, we grow four balls around
each of the four nodes u1, u2, v1, v2. Each ball is grown for R
steps (i.e., we have R visited nodes in each ball), and we keep
the balls around u2 and v2 disjoint from the balls around u1

and v1 by rejecting any neighbor that is already included in
those balls.6 Since whp. the degree of each node is

√
n, there

at most O(R
√
n) = O(n/

√
lnn) nodes that if seen would be

rejected. Therefore, arguing as in the proof of Lemma 1,
at the end of the ball-growing process, each ball contains
Ω(R lnn) nodes. Therefore, the argument in the proof of
Lemma 1 shows that with high probability, the ball Bu1 in-
tersects with the ball Bv1 and the ball Bu2 intersects with
the ball Bv2 . These intersections define two edge-disjoint
(in fact, internally node-disjoint) paths between S and T .
The number of probes this algorithm performs is precisely
4R = O(

√

n/ lnn).

Theorem 4. There is an algorithm for ST -path connec-
tivity on evolving graphs that guarantees that for every t, the
probability that the path output by the algorithm at time t is
invalid is at most O(lnn

n
).

Proof. As in the proof of Theorem 4, we divide the time
into phases, in this case of length 8R. The ith phase starts at
time t = 8Ri+1 and ends at time 8R(i+1). In the even time
steps during each phase, we run the algorithm from Lemma 3
to find two disjoint paths between S and T (pretending that
the graph does not change while the algorithm is operating).
We denote the two paths computed at the end of phase i by
Pi (the primary path, e.g. the one going through u1 and v1)
and P ′

i (the emergency path, e.g. the one going through u2

and v2). In the odd time steps during phase i, the algorithm
probes the nodes on the path Pi−1 in a round-robin fashion
to discover failures. The output during phase i, before any
possible failure is detected is Pi−1, and after such a failure
is detected, is P ′

i−1. This completes the description of the
algorithm.

Next, we analyze the probability that the path output by
the algorithm at a fixed time step t ∈ [8Ri+ 1, 8R(i+ 1)] is

6Here we need to initially add the nodes u1, u2, v1, v2 to
the corresponding balls to avoid situations where one balls
blocks the center of another ball.

invalid. This probability is the sum of the probability that
Pi−1 is output at time t and it is invalid, and the probability
that P ′

i−1 is output at time t and it is invalid. Since Pi−1

has length O(ln n) and is probed during the odd time steps
of phase i, the only way it is invalid but still is chosen as the
output is if one of its edges is removed during the last O(ln n)
steps. Therefore, by the union bound, the probability that
Pi−1 is output at time t and it is invalid is bounded by

O

(

ln2 n

m

)

= O

(

lnn

n

)

.

The event that P ′
i−1 is output at time t and it is invalid

occurs only if for both paths Pi−1 and P ′
i−1 at least one

edge of the path is removed in one of the time steps af-
ter this edge is observed by the path-finding algorithm of
phase i− 1 and before t. There are at most 16R such time
steps, and each path has O(lnn) edges. Therefore, the prob-
ability of this event for each of the two paths is at most
O(16R lnn/m) = O((n lnn)−1/2). Since the two paths are
disjoint, these two events are negatively correlated (in fact,
conditioning on the edges of one path having been removed
only slightly decreases the probability of the similar event
for the second path). Therefore, the probability of the event
that P ′

i−1 is output at time t and it is invalid is at most

O(((n lnn)−1/2)2).
Putting these two bounds together, we obtain that the

probability that the algorithm outputs an invalid path at
time t is at most

O

(

lnn

n
+

1

n lnn

)

= O

(

lnn

n

)

.

3.3 Lower Bound
One might wonder if a three-path algorithm would result

in a similar improvement over the two-path algorithm. As
we show, this is not the case, at least up to loglog factors. In-
tuitively, the reason for this is that after two paths, the time
it takes to discover a new failure becomes the dominant fac-
tor in the overall probability of outputting an invalid path,
and keeping track of more paths cannot help with this. We
give a sketch of the lower bound proof in the following that
contains the main ideas, although a complete formal proof
requires careful use of the principle of deferred decisions.

Theorem 5. Assume m = Θ(n lnn). For any ST -path
connectivity algorithm on evolving graphs and any fixed t,
the probability that the algorithm outputs an invalid path at

time t is at least Ω
(

lnn
n(ln lnn)2

)

.

Proof Sketch. Given our assumptions, the graph Gt

at time t is distributed according to G(n,m). Therefore,
it is not hard to show that, with high probability, the
length of the shortest path between S and T is at least
L = Ω(lnn/ ln lnn). In particular, the length of the path
P output by the algorithm at time t is at least L. Consider
the time interval [t − L/4, t]. The algorithm can probe at
least L/4 nodes in this time interval. Therefore, there are at
least L/2 edges on P neither of whose endpoints is probed
by the algorithm in this interval. For each such edge e and
each time step x in [t−L/4, t], there is a probability of 1/m
that e is removed from the graph at time x. The probability

that at least one of these L2/8 events happen is at least

Ω

(

L2

m
− L4

m2

)

= Ω

(

lnn

n(ln lnn)2

)

,

and if this event happens, the path output at time t will be
invalid.

3.4 Node-Disjoint Paths Between O(
√
n) Node

Pairs
The ST -connectivity algorithm accesses O(

√
n) nodes in

each phase. By constructing in parallel a number of node-
disjoint balls we can extend the technique to maintaining
h = O(

√
n) node-disjoint paths between a given collection

of h disjoint pairs of nodes {(S1, T1), . . . , (Sh, Th)}, with an
O(h lnn

n
) guarantee on the probability of producing an in-

valid answer. The details are presented in Appendix B.

4. MINIMUM SPANNING TREE
In this section we study the minimum spanning tree

(MST) problem on evolving graphs. The problem is de-
fined on a weighted complete graph in which the weights
are changing as described in Section 2. In particular, this
means that at time t the input Gt is the complete graph
with n nodes and m =

(

n
2

)

edges, and the weights of the

edges induce a strict ordering πt on the set E of edges
e1 <πt · · · <πt em, where e1 is the lowest weight edge. We
assume that the ordering of edges changes gradually and we
model this by assuming that for every t > 1, πt+1 is ob-
tained from πt by swapping α random pairs of consecutive
elements. The analysis we present in this section can handle
α as large as O (n). As we will see this ordinal weighted
model is rich enough to capture the MST problem on evolv-
ing graphs.

At each time step t we are given limited access to the
real ordering πt. In particular, at each time step t we can
compare a pair of edges and obtain their relative ordering
in πt. We denote the rank of an edge e in an ordering π by
π(e) (e.g., the lowest weight edge has π(e) = 1). Finally,
we assume that the initial order of the edges π1 is random
and that the algorithm knows π1; otherwise our results hold
for sufficiently large t (in particular, for t = Ω(m lnm), the
time required to sort the edges).

4.1 Measure of Approximation
Since we do not rely on the actual weights of edges, we

need to define the notion of approximation for MST. Sup-
pose that the MST is given by choosing edges ei1 <πt

· · · <πt ein−1 . If our algorithm chooses edges ei′1 <πt

· · · <πt ei′
n−1

, a natural metric would be to look at the

correspondence between the indices I = {i1, . . . , in−1} and
I ′ = {i′1, . . . , i′n−1}. A measure like the Jaccard distance7

could be bad because I ∩ I ′ might be empty, but each index
might be off just by 1. Because of the properties of spanning
trees, we have the following proposition. Here recall that the
edges of the graph are indexed such that e1 <πt · · · <πt em.

Proposition 6. The indices in I and I ′ are such that for
every 1 ≤ ` ≤ n− 1, we have i` ≤ i′`.

Proof. The proof is by contradiction. Assume that there
exists a spanning tree of indices I ′ = {i′1, . . . , i′n−1} and a

7Given two sets A,B, their Jaccard distance is |A∆B|
|A∪B|

.

subset S ⊂ {1, . . . , n− 1}, S 6= ∅ such that ∀s ∈ S : is > i′s.
In particular let r be the minimum of S. Note that i′r > ir−1,
otherwise i′r−1 < i′r ≤ ir−1 and r would not be the minimum
of S. Now, consider edges e1 <πt · · · <πt ei′r−1: ei′1 <πt

· · · <πt ei′
r−1

is a spanning forest for these edges (since the

MST has r − 1 edges in the same set). Since i′r < ir, the
MST does not contain ei′r , therefore i′r creates a cycle when
added to ei′1 <πt · · · <πt ei′

r−1
, that is a contradiction.

This suggests D =
∑n−1

`=1 (i
′
` − i`) as a natural ordi-

nal measure to compare the solution I ′ against the opti-
mal solution. This value ranges from 0 (when I ′ = I) to
O(nm) = O(n3). Note that if L is the maximum difference
between the weights of two edges that are adjacent according
to πt, then by Proposition 6, the total weight of the span-
ning tree produced by the algorithm is at most the weight
of the MST plus DL. Therefore, a bound on the measure D
will result in a bound on the total weight when the cardinal
values of the weights are considered.

4.2 The Algorithm and Analysis
Our first algorithm is as follows: we use the simple sorting

algorithm of [2] to keep an approximation π̃t of the real
ordering πt of all the O(n2) edges. At each time step, our
first algorithm returns the tree built using Kruskal’s greedy
algorithm on π̃t (i.e., the MST for ordering π̃t).

Before presenting the analysis, we need some notation:
let T and T ′ denote the MST and the tree produced by the
algorithm (i.e., the MST with respect to π̃t), respectively.
Recall that the indices of the edges in T and T ′ are denoted
by I and I ′, respectively. Let Ek = {ei1 , . . . , eik} be the first
k edges in T , the MST according to order πt (i.e., the first
k edges chosen by Kruskal’s algorithm), and Tk = (V,Ek)
denote the subgraph induced by these edges. Similarly, let

E′
k

4
= {ei′1 , . . . , ei′k} and T ′

k
4
= (V, E′

k).

The following is a generalization of [2, Lemma 3], and its
proof is similar to the one in [2].

Lemma 7. For every edge e we have
∣

∣πt(e)− π̃t(e)
∣

∣ <
c1α lnn, in expectation and with high probability for some
constant c1.

Let E(e) be the event “
∣

∣πt(e)− π̃t(e)
∣

∣ < c1α lnn”, and
E = ∩e∈EE(e). By choosing the constant c1 large enough,
we have that the event E holds with high probability. Now,
since the maximum error cannot be more than n3, choosing
c1 large enough we have that the event ¬E only contributes a
negligible amount to the expectation of measure D. There-
fore, for ease of exposition, we condition on the event E in
the analysis below.

A warmup bound. For any t, the permutation πt cor-
responds to a random order of edges. Thus, with high
probability the edges of the MST T are among the light-
est O (n lnn) edges. The tree T ′ built by our algorithm
will use some edges not in the T . Since the choice of an
edge depends upon the choice of edges that precede it in the
ordering, is it possible that our algorithm builds a tree of
measure D = Θ

(

n2
)

? (Note that since in−1 = O (n lnn), it

is sufficient that i′n−1 = Θ
(

n2
)

for this to happen.) In the
next lemma we show that this is not the case:

Proposition 8. At any time step t, we have that D ≤
2c1αn lnn with high probability.

Proof. For an edge eij in the MST T , consider its posi-

tion π̃t(eij) in π̃t. From Lemma 7 we have

π̃t(eij) ≤ ij + c1α lnn

w.h.p for every edge eij . Since T is a spanning tree, and

T ′ is the MST for π̃t, by Proposition 6 (which we apply
after exchanging permutations πt and π̃t) we have π̃t(ei′

j
) ≤

π̃t(eij). Also, by Lemma 7, we have

π̃t(ei′
j
) ≥ πt(ei′

j
)− c1α lnn = i′j − c1α lnn.

Putting these three inequalities together, we obtain:

i′j − c1α lnn ≤ π̃t(ei′
j
) ≤ π̃t(eij) ≤ ij + c1α lnn.

Thus, with high probability,

D =

n−1
∑

`=1

(i′` − i`) ≤ 2c1αn lnn.

An improved analysis. In the rest of this section we
present a more careful analysis, showing that the error of the
algorithm is much smaller than the one provided by Propo-
sition 8, namely O

(

α2 ln2 n
)

. Since the proof is rather in-
volved technically, with a few subtle points, we first present
a high-level overview. We want to compare the tree T ′ that
the algorithm creates (the MST according to the order π̃t)
with the MST T (the one according to πt). To do that we
show that most of the edges of the two spanning trees are
the same, and if the algorithm did not to use an edge e that
exists in the MST T it replaced e with another edge that it is
not ranked much worse (according to πt). It turns out that
associating the sets of edges that are not common in the two
trees is tricky as these edges connect components with each
other in the spanning trees and the component structure in
the two trees is different. For this reason we define two map-
pings between the edges of the two trees. The first is the one
used in Lemma 10 and maps the edges that exist only in the
tree T ′ produced by the algorithm to the set of (all) edges of
the MST T . Lemma 10 is used subsequently in the proof of
Theorem 13 to show that the number of edges existing only
in T ′ is O(α lnn). However, since this mapping is not a one-
to-one mapping, it cannot be used to bound the cost of the
two solutions. For this reason, in Proposition 12 we prove
the existence of a second mapping, a bijection from the set
of edges of one tree to the set of edges of the other, with the
property that most of the edges are mapped to themselves,
while the edges that are mapped to different edges are at
most α lnn far from each other. This proposition is also
used in Theorem 13 to show that the difference in the cost
of the two solutions is O

(

α2 ln2 n
)

.
We start with the following lemma which follows easily

from Kruskal’s MST algorithm.

Lemma 9. Consider the forest F built by Kruskal’s algo-
rithm on π̃t after all the edges in Ek are processed by the
algorithm. If nodes u, v are connected in Tk, then they are
connected in F .

Consider an edge e = (u, v) in T ′ (the MST of π̃t) that is
not in T (the MST of πt). Let eik be the first edge chosen by
Kruskal’s algorithm on πt such that u and v are connected

in Tk (i.e., in Tk nodes u and v are connected but in Tk−1

they are not connected).

Lemma 10. We have

0 < πt(e)− πt(eik) ≤ 2c1α lnn

in expectation and with high probability.

Proof. First we prove the first inequality, that is, that
edge eik is ranked before edge e according to πt. Recall that
e = (u, v) does not belong to Ek, and that in Tk = (V,Ek)
nodes u, v are connected. Therefore, adding e to Tk creates
a cycle, which means that if it were the case that e <πt eik ,
then Kruskal’s algorithm would have selected edge e before
selecting eik when creating the MST T , a contradiction.

For the second inequality assume, for the sake of contra-
diction, that πt(e)−πt(eik) > 2c1α lnn. Then, for all j ≤ k
we have with high probability

π̃t(e)− π̃t(eij)
(a)
> πt(e)− c1α lnn− πt(eij)− c1α lnn

(b)

≥ πt(e)− πt(eik)− 2c1α lnn

(c)

≥ 0,

where (a) follows by applying twice Lemma 7, (b) from the
fact that for j < k we have eij <πt eik , and (c) from our
assumption. But this would mean that for all the edges
eij for j ≤ k, we have that eij <π̃t e, which by Lemma 9
in turn implies that Kruskal’s algorithm could not have se-
lected edge e while building T ′ (the MST according to π̃t),
a contradiction.

To bound the value D, we note that we can rewrite D =
∑n−1

j=1 (i
′
j − ij) as D =

∑n−1
j=1 (π

t(f(eij)) − ij), where f is

any bijection from the set En−1 into the set E′
n−1. In what

follows we will prove that there exists a mapping f such that
for each edge e in En−1 ∩ E′

n−1 we have f(e) = e, and for
each e in En−1 \E′

n−1 the corresponding edge f(e) ∈ E′
n−1

is such that

πt(f(e))− πt(e) ≤ c1α lnn.

To obtain an upper bound on D we then only need to obtain
an upper bound on the number of edges in En−1\E′

n−1. The
following lemma is instrumental in building the bijection f .

Lemma 11. For each j, if eij is the `th edge in En−1 \
E′

n−1 in the order πt, then:

(i) among e1, . . . , eij+2c1α lnn there are at least ` edges in
E′

n−1 \En−1;

(ii) at least one edge of E′
n−1 \ En−1 is in the set

eij , . . . , eij+2c1α lnn.

Proof. We first prove (i) =⇒ (ii). Suppose not. Then
there are at least ` edges of E′

n−1\En−1 among e1, . . . , eij−1.

This implies that πt(ei′
j
) ≤ ij −1 < ij = πt(eij), contradict-

ing Proposition 6.
We now prove (i) by contradiction. Assume there are

fewer than ` edges of E′
n−1\En−1 among e1, . . . , eij+2c1α lnn.

Let S denote the set of all edges except those that come after
all edges of Ej in the ordering π̃t. Using Lemma 7 twice, it
follows that S is a subset of e1, . . . , eij+2c1α lnn, and by our
assumption, there are fewer than ` edges of E′

n−1 \En−1 in

S. Thus, denoting r
4
= |S ∩ En−1 ∩E′

n−1|, the forest built
by Kruskal’s algorithm on the set S in order π̃t has size less
than ` + r. On the other hand, the set S contains a forest
of size r + `, namely Tj . Since Kruskal’s algorithm always
builds a forest of maximal size, this is a contradiction.

We are now ready to prove the existence of f(·) suitable
for our purpose.

Proposition 12. There exists a bijection f : En−1 7→
E′

n−1 such that

1. for each edge e in En−1 ∩E′
n−1: f(e) = e;

2. for each e in En−1 \E′
n−1 we have: πt(f(e))−πt(e) ≤

2c1α lnn.

Proof. We build the mapping f as follows. We consider
the edges in En−1 one by one following their rank in πt. Let
eij be the current edge considered. If eij ∈ E′

n−1, then we
set f(eij) = eij . Otherwise, we choose the edge e ∈ E′

n−1 \
En−1 of minimum rank in πt that has not been considered in
building f(·) yet. Lemma 11 ensures that πt(e)− πt(eij) ≤
2c1α lnn. We then set f(eij) = e.

We are now ready to give a bound on D.

Theorem 13. There is an MST algorithm on evolving
graphs such that for every time step t, the solution output
by the algorithm at time t satisfies D = O

(

α2 ln2 n
)

in ex-
pectation and with high probability.

Proof. To prove the theorem we will use Lemma 10 to
count the number of edges in which the optimal solution
and the algorithm’s solution disagree, and Proposition 12 to
bound the cost. This is the reason that we need to define
two mappings (one defined in Lemma 10 and the bijection
given by Proposition 12).

By Lemma 10, an edge e = (u, v) that is in T ′ (the MST
according to order π̃t) and not in T (the MST according to
order πt) is found in the 2c1α lnn positions of πt following
the edge eik (that belongs to T), that is the first edge in
the order πt to connect components C1 and C2 of Tk−1,
with C1 containing u and C2 containing v. We call edge e
a bad edge associated to eik . To compute the total error,
we will count the number of bad edges (associated to any
edge in T), and given the existence of the bijection f we can
apply Proposition 12 and conclude that the error is at most
2c1α lnn times the number of bad edges.

Now we compute the number of bad edges. For edge eik
in the T , which connects components C1 and C2 of Tk−1,
let Bik be the set of edges between component C1 and C2.
Since the order πt is a random permutation of the edges,
and since edge eik is in T (the MST according to πt), eik
has to be among the first 2n lnn ranked edges of πt with
high probability. (This follows from the fact that in the
G(n,m) model with m = 2n lnn edges, a spanning tree ex-
ists with high probability.) Now let us consider a potential
bad edge e that will be associated with edge eik . Since
πt(eik) < 2n lnn, and since e is in a random position after
edge eik (here again we use the fact that πt defines a ran-
dom permutation of the edges), the probability that e is a
bad edge is at most the probability that edge e is one of the
2c1α lnn edges that follow edge eik , which is at most

2c1α lnn

m− 2n lnn
= O

(

α lnn

n2

)

.

Therefore, the expected number of bad edges associated with
edge eik is

|Bik | ·O
(

α lnn

n2

)

.

However, the sets Bik associated with all the edges eik of
the MST T form a partition of all edges. Therefore, the
expected number of bad edges is

∑

ik:eik
∈T

|Bik | ·O
(

α lnn

n2

)

= O (α lnn) .

Now we apply Proposition 12 and we obtain that the ex-
pected total error is O

(

α2 ln2 n
)

. Since the number of bad
edges is the sum of independent Bernoulli random variables,
we also have (by an application of a Chernoff bound) that
the total error is O

(

α2 ln2 n
)

with high probability.

It is sometimes possible to do better than Theorem 13.
The idea is to run two sorting algorithms in parallel, the
first one is to keep track of the cheapest O(n log n) edges in
the graph, and the other one only on this set, to keep track of
the ordering of these edges (which are the only edges that are
important in the construction of the MST) more accurately.
This can result in a constant bound when α is sublinear in
n. See Appendix C for the sketch of this algorithm and its
proof.

5. MATROIDS
In this section we study how the results on MST can be

generalized to the more general problem of finding a basis
of minimum weight in a matroid. Recall the definition of a
matroid:

Definition 14. A matroid M is a pair (E,S) where E
is a finite set of size m and S is a non-empty collection of
subsets of E, S ⊆ 2E , satisfying the following properties:

– hereditary property: if X ∈ S then X ′ ∈ S for all
X ′ ⊆ X;

– exchange property: if X,Y ∈ S and |X| > |Y |, then
there is an element e ∈ X \ Y such that Y ∪ {e} is in S.

Any set in S is called an independent set and any maximal
independent set is called a basis of M.

Let n = |M | denote the rank of the matroid M, where
M is the minimum weight basis. The model for change is
similar as before: at any time t, the weights of the elements
in E induces an order πt on E. For every t > 1, πt is ob-
tained from πt−1 by swapping α random pairs of consecutive
elements. The algorithm can compare the weights of two el-
ements of E in each time step t, and will get the result of
this comparison according to πt. We assume that the ini-
tial ordering π1 is random and that the algorithm knows π1;
otherwise our results hold for sufficiently large t. Our goal
is to find a basis of M of minimum total weight.

As before, we use an ordinal measure of approximation
defined as follows: assume the elements in E are indexed
such that e1 <πt · · · <πt em, and let i1 < · · · < in and i′1 <
· · · < i′n denote the index of the elements of the minimum
weight basis M , and the basis M ′ computed by the algo-
rithm, respectively. We use the quantity D =

∑n
`=1(i

′
` − i`)

as a measure of the quality of the solution produced by the

algorithm. It is not hard to generalize Proposition 6 for ma-
troids, justifying that D is indeed a reasonable measure of
approximation.

As before, we use the sorting algorithm of [2] to keep an
approximation π̃t of the real ordering πt of all the m ele-
ments, and in each step return the minimum weight basis
built using the greedy algorithm on π̃t.

An argument essentially identical to the proof of Proposi-
tion 8 shows that the solution found by the above algorithm
satisfies D = O(n logm) with high probability. To get a
better bound, we need an additional assumption about the
matroid M. Namely, we need to assume that the number
of disjoint bases of the matroid is not too small. Let k de-
note the maximum number of disjoint bases in M. In what
follows, we assume that there exists a constant ε > 0 such
that k = Ω(mε lnn). For example, in the MST problem on a
complete graph with N nodes, we have k = Θ(N) (Polesskii
theorem [4]), n = N − 1, and m = Θ

(

N2
)

. Therefore, this
assumption comes for free in this case. Using this condition,
we are able to prove the following bound, which general-
izes Theorem 13. The proof of this statement is deferred to
Appendix D.

Theorem 15. For any matroid satisfying the condition
k = Ω(mε lnn), there is an algorithm that at any time step
t, outputs a basis such that D = O

(

α2 ln2 m
)

in expectation
and with high probability.

It is sometimes possible to obtain a better error, as re-
ported in Appendix E.

6. DISCUSSION AND FUTURE WORK
In this paper we applied the evolving-data model [2] for

sorting and selection on sequences to graph problems. The
model captures the fact that in many real-life problems the
graph changes continually yet for these changes to be ob-
served a protocol must keep querying the graph. We studied
weighted and unweighted problems by analyzing the prob-
lems of maintaining a minimum spanning tree and of main-
taining connectivity between two nodes. We also extended
our spanning-tree analysis to general matroids.

Natural extensions include the application of the model
to more graph problems such as maintaining a minimum-
weight matching, shortest paths, and minimum-flow. In ad-
dition, in this paper we based our problem on ordinal weights
leading to a simple and clean model. For problems such
as matching, shortest path, and flow, it is worth exploring
richer models in which edge have actual weights that change
gradually. Finally, it is of interest to develop protocols and
obtain lower bounds on the performance achievable by dis-
tributed algorithms with local knowledge and limited query
power.

7. ACKNOWLEDGEMENTS
The research leading to these results has received funding

from the EU FP7 Project N. 255403 – SNAPS. Eli Upfal was
also supported in part by an award from Yahoo! Research
Faculty Research and Engagement Program.

8. REFERENCES
[1] P. K. Agarwal, D. Eppstein, L. J. Guibas, and M. R.

Henzinger. Parametric and kinetic minimum spanning
trees. In FOCS, pages 596–605, 1998.

[2] A. Anagnostopoulos, R. Kumar, M. Mahdian, and
E. Upfal. Sorting and selection on dynamic data.
Theoretical Computer Science, 412(24):2564–2576,
2011.

[3] J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. J. Algorithms, 31(1):1–28,
1999.

[4] C. J. Colbourn. The Combinatorics of Network
Reliability. Oxford University Press, New York, 1987.

[5] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic
graph algorithms. In M. J. Atallah, editor, Algorithms
and Theory of Computation Handbook, chapter 8.
CRC Press, 1999.

[6] D. R. Karger. Random sampling in matroids, with
applications to graph connectivity and minimum
spanning trees. In Proc. 34th FOCS, pages 84–93,
1993.

[7] R. Kleinberg. Online Decision Problems with large
Strategy Sets. PhD thesis, MIT, 2005.

[8] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Now Publishers Inc., 2005.

[9] J. G. Oxley. Matroid Theory. Oxford University Press,
New York, 1992.

[10] D. Ron. Property testing: A learning theory
perspective. Foundations and Trends in Machine
Learning, 1(3):307–402, 2008.

[11] D. Ron. Algorithmic and analysis techniques in
property testing. Foundations and Trends in
Theoretical Computer Science, 5(2):73–205, 2009.

[12] E. Shamir and E. Upfal. A fast construction of disjoint
paths in communication networks. In M. Karpinski,
editor, Proc. FCT, volume 158 of Lecture Notes in
Computer Science, pages 428–438. Springer, 1983.

[13] A. Slivkins and E. Upfal. Adapting to a changing
environment: The Brownian restless bandits. In Proc.
21st COLT, pages 343–354, 2008.

APPENDIX

A. ARBITRARY STARTING CONFIGU-
RATION FOR THE CONNECTIVITY
PROBLEM

In Section 3 we have analyzed the case where we start
the graph in the stationary regime, arguing that as t → ∞
the graph is distributed as a G(n,m) random graph. In this
section we make this statement more quantitative by using
the coupling method.

Let {Gt = (V,Et); t = 0, 1, 2, . . . } denote the evolution
of the graph and let {G′

t = (V,E′
t); t = 0, 1, 2, . . . } be the

evolution of a graph under the same rules of edge insertion
and deletions and with G′

0 being distributed as a G(n,m)
random graph. It is easy to see that each G′

t is distributed
as a G(n,m) random graph (i.e., G(n,m) is the stationary
distribution). We define the following coupling between the
two processes.

Let U = {(u, v); u, v ∈ V } be the set of all potential edges
in the graph. At time t let (u′

o, v
′
o) be a random edge from

E′
t and (u′

n, v
′
n) be a random potential edge from U \ E′

t ∪
{u′

o, v
′
o}. Then we let E′

t+1 = (E′
t \ {(u′

o, v
′
o)}) ∪ {(u′

n, v
′
n)}.

That is, we follow the process described in Section 2. This
describes the evolution of G′

t.

Now we describe the evolution of Gt, which we will couple
with that of G′

t. At time t, an edge (uo, vo) will be removed
and an edge (un, vn) will be added. These edges are selected
as follows. We define E′′

t = E′
t\(u′

o, v
′
o) (useful since (u

′
o, v

′
o)

is a valid edge to be (re)inserted).

• If (u′
o, v

′
o) ∈ Et ∩ E′

t then let (uo, vo) = (u′
o, v

′
o), other-

wise let (uo, vo) be distributed uniformly at random in
Et \E′

t.

• If (u′
n, v

′
n) ∈ U \ (Et ∪E′′

t) let (un, vn) = (u′
n, v

′
n), oth-

erwise let (un, vn) be distributed uniformly at random
in E′′

t \ Et.

One can notice that the edge (uo, vo) is a uniformly ran-
dom edge of Gt and (un, vn) is a uniformly random nonedge,
so Gt indeed evolves according to the model of Section 2.
In addition, notice that if at some time t0 we have that
Et0 = E′

t0 , then we have that Et = E′
t for all t ≥ t0. We

therefore define the coupling time tc as

tc = inf{t ≥ 0; Et = E′
t}.

Since the distribution of G′
t is according to G(n,m) then

notice that also the graph of interest Gt is distributed as
G(n,m) for all t ≥ tc. Therefore, we want to bound the
coupling time tc. We do that in the following theorem.

Theorem 16. For any initial state of the graph G0 the
coupling time is O(m lnm) whp.

Proof. For E,E′ ⊂ U with |E| = |E′| define d(E,E′) =
|E \ E′| to be the number of edges by which E and E′ dif-
fer; we call d(E,E′) the distance between E and E′. We
will show that at every step, d(Et, E

′
t) decreases with suf-

ficiently high probability. At a given step t, notice that if
(u′

o, v
′
o) ∈ Et \ E′

t, and (u′
n, v

′
n) ∈ (u′

n, v
′
n) ∈ U \ (Et ∪ E′′

t),
we have that d(Et+1, E

′
t+1) = d(Et, E

′
t) − 1, otherwise

d(Et+1, E
′
t+1) = d(Et, E

′
t). Therefore, the probability that

the distance decreases equals

|Et \E′
t|

|Et|
· |U \ (Et ∪E′′

t)|
|U \E′′

t)|
=

d(Et, E
′
t)

m
·
(

n
2

)

−m− d(Et, E
′
t) + 1

(

n
2

)

−m+ 1
.

Since we have assumed that m = O(n
√
n), and since

d(Et, E
′
t) ≤ m, we have that the second fraction is Θ(1).

Therefore we have that the probability that the distance

will decrease is at least γ
d(Et,E

′

t)

m
for some constant γ.

Therefore, the coupling time is stochastically bounded by
a random variable, which is the sum of m geometric random
variables, with expectation

m
∑

d=1

m

γd
= Θ(m lnm).

Therefore, the expected coupling time is O(m lnm) and (by
applying Chernoff bounds) this holds whp.

B. NODE-DISJOINT PATHS BETWEEN
O(

√
N) NODE PAIRS

Theorem 17. There is an algorithm that maintains h =
O(

√
n) node-disjoint paths between a given collection of h

disjoint pairs of nodes in an evolving graph. The algorithm
guarantees that for every t and for each pair (Si, Ti), the
probability that the path output by the algorithm at time t is
invalid is at most O(h log n

n
).

Proof Sketch. We sketch the proof for m = Θ(n log n)
(see [12] for a tighter analysis of this procedure). Let
{(S1, T1), . . . , (Sh, Th)} be the set of pairs. We execute the
two-path ST connectivity algorithm for each pair (Si, Ti).
The disjoint path algorithm alternates between the h copies
of the two-path ST connectivity algorithm in a round-robin
fashion with an additional constraint that the 4h balls built
by the algorithms are disjoint, and no ball contains more
than c1

√
n nodes for some c1 < 1. When the algorithm vis-

its node v at a given ball, it adds to the ball the neighbors of
v that are not yet in any ball, until the ball has size c1

√
n.

Let p = c2 log n/n and h = c3
√
n. If c2 ≥ 24/(1 − 4c1c3)

then with high probability each visited node adds at least
log n new nodes to its ball. Thus, after visiting

√
n/ log n

nodes in each ball, all balls are of size c1
√
n. The probability

that any pair is not connected by two edge disjoint path is

bounded by 2h(1 − p)c
2
1n ≤ 1/n for c2 ≥ 2/c21 (considering

only unvisited nodes).
The execution time of a phase of the disjoint path al-

gorithm is h times the execution time of a phase of the
two-path ST connectivity algorithm. Following the proof
of Theorem 4, the probability that the two path algorithm
outputs an invalid path is dominated by the probability that
the path was changed in the last O(log n) steps of that al-
gorithm, which is O(h log n/n) in our case because the last
O(log n) steps of each copy of the two-path algorithm are
executed during a time interval of O(h log n) steps.

C. A BETTER ALGORITHM FOR MST
We now develop an algorithm resulting in a smaller error

for the MST on a complete graph, given some restriction on
α.

Since the error of the sorting depends on the number of
edges to be ordered, if we could restrict the number of edges
considered by the sorting algorithm, the total error would
become much smaller. In particular, if there exists an ε > 0
such that α = O

(

n1−ε
)

, we can obtain a better bound on
the error since the following applies.

Lemma 18. Consider a subset E′ ⊆ E of the edges with
|E′| = O (n lnn), and run the sorting algorithm only on E′.

Let π̃
′t be the order obtained from this sorting, and let π

′t

be πt restricted to the edges of E′. If there exists a constant
ε > 0 such that α = O

(

n1−ε
)

, for every element e we have
that

∣

∣

∣π
′t(e)− π̃

′t(e)
∣

∣

∣ = O (1)

with high probability for n large enough.

(The proof of Lemma 18 is similar to proof of Lemma 3
in [2], with the difference that we are sorting O (n lnn) edges

and each pair of consecutive edges in π
′t has probability at

most 2α/n2 to swap at each time step.)
Since α = O

(

n1−ε
)

, we have that (i) Lemma 18 holds,
and (ii) the MST is contained in the O (n lnn) first ranked
edges of π̃t. We can then use two sorting algorithms in
parallel: one sorts all the n2 edges in the odd steps, while
the other one takes the first O (n lnn) edges produced by
the sorting of all edges, and sort them in the even steps. If
we can build an MST using only the edges considered by the
second sorting algorithm, we produce that MST in output,
otherwise we return the MST built on the order produced

by sorting all edges. With the same analysis of Section 4.2,
we obtain the following:

Theorem 19. Let α = O
(

n1−ε
)

for a constant ε > 0.
The error D is O (1) with high probability.

D. ANALYSIS OF THE EVOLVING MA-
TROID ALGORITHM

In what follows we let Mk be the first k elements in M
according to order πt as chosen by the greedy algorithm:
Mk = {ei1 <πt ei2 <πt . . . <πt eik}. We let M ′

k be the first
k elements in the approximate basis according to order π̃t:

M ′
k =

{

ei′1 <πt ei′2 <πt . . . <πt ei′
k

}

.

Recall that we assumed that k = Ω(mε lnn) for a constant
ε > 0, where n denotes the rank of the matroid M and k
denotes the maximum number of disjoint bases in M. Then
the minimum basis in πt is found in the lightest o(m) ele-
ments, as ensured by the following corollary of Theorem 5.2
in [6].

Corollary 20. Suppose M contains k disjoint bases.
Then a basis is found in the lightest O

(

m lnn
k

)

elements of

πt.

Thus, when k = Ω(mε lnn), the minimum weight basis is
in the lightest O

(

m lnn
k

)

= O
(

m1−ε
)

elements of πt.
Note that it is not easy to compare M and M ′, since

the elements chosen by the greedy algorithm are not in-
dependent. However, as done in Section 4 we can rewrite
D =

∑n
`=1(j`− i`) as D =

∑n
j=1(π

t(f(eij))− ij), where f(·)
is any bijection from the set M = Mn into the set M ′ = M ′

n.
In what follows we prove that if the analogous of Lemma 7
for matroids holds there exists a bijection f(·) such that for
each element e in Mn ∩M ′

n we have f(e) = e, and for each
e in Mn \M ′

n the corresponding element f(e) ∈ M ′
n is such

that

π̃t(f(e))− π̃t(e) ≤ 2c1α lnm.

To obtain an upper bound on D we then only need to obtain
an upper bound on |M ′

n \Mn| = |Mn \M ′
n|.

The following lemma is instrumental in building the bi-
jection f(·) with the above properties. Its proof is similar
to the proof of Lemma 11

Lemma 21. For each j, if eij is the `th element in Mn \
M ′

n in the order πt, then:

1. in
{

e1, e2, . . . , eij+2c1α lnm

}

there are at least ` ele-
ments in M ′

n−1 \Mn−1;

2. at least one element of M ′
n \ Mn is in the set

{

eij+1, eij+2, . . . , eij+2c1α lnm

}

.

Proof. We first prove that if property 1 above holds,
then 2 must hold. Let assume for the sake of contradic-
tion that 1 holds but 2 does not. Then there are no ele-
ments of M ′

n \Mn in
{

eij+1, eij+2, . . . , eij+2c1α lnm

}

. Thus

in
{

e1, e2, . . . , eij−1

}

there are ≥ ` elements of M ′
n \ Mn,

and we have that πt(ei′
j
) < πt(eij) (i.e., i′j < ij), that con-

tradicts Proposition 6 for matroids.
We now prove 1. The proof is by contradiction. Let as-

sume that in e1 <πt e2 <πt . . . <πt eij+2c1α lnm there are
< ` elements of M ′

n \Mn. Let F be the elements in order
π̃t before seeing all elements in Mj . Note that F is a subset

of elements e1 <πt e2 <πt . . . <πt eij+2c1α lnm, since we
assume that the analogous of Lemma 7 for matroids holds.

Let r = |F ∩Mn ∩M ′
n| (i.e., r is the number of elements

in both Mn and M ′
n seen in π̃t before observing all elements

in Mj). Thus Mj ⊆ F , and j = |Mj | = r + `. Now,
since there are < ` elements of M ′

n \ Mn in e1 <πt e2 <πt

. . . <πt eij+2c1α lnm, there are < ` elements of M ′
n \Mn in

F , i.e. |(M ′
n \ Mn) ∩ F | < j. By the exchange property of

matroids there exists e′ ∈ Mj \ ((M ′
n \Mn) ∩ F) such that

(M ′
n \Mn) ∩ F ∪ {e′} ∈ S. Let π̃t(e′) be the rank of e′ at

time t in order π̃t. By the hereditary property of matroids
(M ′

n \Mn) ∩ {e1 <π̃t e2 <π̃t . . . <π̃t eπ̃t(e′)−1} ∪ {e′} ∈ S,

thus e′ should have chosen by the greedy algorithm on π̃t,
thus e′ ∈ M ′

n, that is a contradiction.

The following guarantees the existence of f(·) suitable to
our purpose. Its proof is the generalization of the proof of
Proposition 12 to matroids.

Proposition 22. There exists a bijection f : Mn → M ′
n

such that

1. for each element e in Mn ∩M ′
n: f(e) = e;

2. for each e in Mn\M ′
n the corresponding element f(e) ∈

M ′
n is such that πt(f(e))− πt(e) ≤ 2c1α lnm.

Proof. We build the bijection f(·) as follows. We con-
sider the elements in Mn one after the other following their
rank in πt. Let eij the current element considered. If
eij ∈ M ′

n, then we set f(eij) = eij . Otherwise, let e be

the element in M ′
n \Mn of minimum rank in πt that has not

been considered in building f(·) yet. Lemma 21 ensures that
πt(e)− πt(eij) ≤ 2c1α lnm. We then set f(eij) = e.

To obtain a bound on D, we now need a bound on |M ′
n \

Mn| = |Mn \ M ′
n|. To derive this bound we restrict the

positions where an element e /∈ M must be found in πt in
order to be chosen forM ′. Since πt is a random permutation,
this would give us a bound on the probability that e is chosen
in M ′.

To this end, recall the definition of cycle for a matroid.

Definition 23. Given a matroid (E,S), a cycle is a min-
imal dependent set, i.e., C ⊆ E is a cycle if ∀e ∈ C,C\{e} ∈
S.

The following is a known property of cycles in matroid
(e.g., Proposition 1.4.11 of [9]).

Proposition 24. Let C1, C2 be two different cycles such
that x ∈ C1 ∩ C2. Then C1 ∪ C2 \ {x} contains a cycle.

Using the proposition above, we can prove the following.

Lemma 25. Given e /∈ M , let ` = min{j : Mj ∪{e} /∈ S}.
Then

1. πt(e) >πt πt(ei`) = i`;

2. if e comes after all elements of M` in π̃t, then e /∈ M ′.

Proof. First note that ` > 0 for all e /∈ M , otherwise e
would have been chosen by the greedy algorithm on πt, i.e.
e ∈ M that is a contradiction. The same argument shows
that the first property holds.

Now consider the second property. Since M` ∪ {e} /∈ S,
there is a cycle C ⊆ M` ∪ {e}. Since M` ∈ S, then e ∈ C.
Let C̄ = C \M ′ \ {e}. If C̄ = ∅ (i.e., all the elements of M`

that constitute C are in M ′), then e cannot be chosen by
the greedy algorithm on π̃t, that is e /∈ M ′.

Otherwise, let C̄ = {er1 , er2 , . . . , erk}. For each erq ∈ C̄
there must be Cq ⊆ M ′ such that Cr ∪ {erq} is a cycle,
since erq /∈ M ′. Consider now the following sequence {Bi}
of subsets of E: B0 = C; Bi = Bi−1 ∪ Ci \ {erq}, for 1 ≤
i ≤ k. It is easy to show that (i) Bi contains a cycle for all
0 ≤ i ≤ k (by Proposition 24), and (ii) Bk ⊆ M ′∪{e}. Thus
M ′ ∪ {e} /∈ S, that is e /∈ M ′.

From the lemma above, we can derive the following bound.

Lemma 26. Given e ∈ M ′\M , let ` = min{j : Mj∪{e} /∈
S}. We have that

0 < πt(e)− πt(eik) ≤ 2c1α lnm.

Proof. The first inequality, that is, that element ei` is
ranked before element e according to πt follows from Prop-
erty 1 of Lemma 25.

For the second inequality assume, for the sake of contra-
diction, that πt(e)−πt(ei`) > 2c1α lnm. Then, for all j ≤ `
we have that

π̃t(e)− π̃t(eij)
(a)
> πt(e)− c1α lnm− πt(eij)− c1α lnm

(b)

≥ πt(e)− πt(eik)− 2c1α lnm

(c)
> 2c1α lnm− 2c1α lnm = 0,

where (a) follows by applying twice the analogous of
Lemma 7 for matroids, (b) from the fact that for j < `
we have that eij <πt eik , and (c) from our assumption. But
this would mean that for all the elements eij with j ≤ `,
we have that eij <π̃t e, which by Lemma 25 implies that
e /∈ M ′, a contradiction.

From Lemma 26, we can derive a bound on |M ′ \M | that
will result in a better bound for D.

Theorem 27. |M ′ \M | ∈ O (α lnm) in expectation and
with high probability, for sufficiently high m.

Proof. Consider the order πt at time t, and let M be
the minimum weight basis for πt. Given an element e /∈ M ,
`(e) = min{j : Mj ∪ {e} /∈ S}.

Now we have:

E[|M ′ \M |] =
∑

e∈E\M

Pr[e is in M ′]

(a)

≤
∑

e∈E\M

Pr[πt(e)− πt(ei`(e)) ≤ 2c1α lnm]

(b)

≤
∑

e∈E\M

O

(

α lnm

m

)

= O (α lnm)

where (a) follows from Lemma 26 and (b) from the fact
that πt is a random permutation and all the edges in M are
among the o(m) lightest edges in πt.

The result with high probability easily follows from a
Chernoff bound.

Combining Proposition 22 and Theorem 27, we can prove
Theorem 15.

Proof Proof of Theorem 15.. By Theorem 27, |M ′ \
M | = O (α lnm) in expectation and with high probability.
By Proposition 22, each element in M ′ \M contributes no
more than a factor O (α lnm) to D. Thus D = O

(

α2 ln2 m
)

in expectation and with high probability.

E. A BETTER ALGORITHM FOR MA-
TROIDS

Similarly to what we have done for the MST problem, we
now provide a better algorithm for general matroids with
some restrictions on α.

As before, note that if we could restrict the number of
elements to be ordered, the total error would become much
smaller. Remember that we impose k = Ω(mε lnn) for some
constant ε > 0, so the minimum weight basis is in the light-
est O

(

m lnn
k

)

elements of πt. Let assume that there ex-

ists ε1 such that α = O
(

mε−ε1
)

. Moreover, assume that

α = O
(

m lnn
k lnm

)

. (This last condition ensures that the min-

imum basis M in πt is found in the lightest O
(

m lnn
k

)

ele-

ments of π̃t too.) Then we can obtain a better bound on the
error since the following applies.

Lemma 28. Consider a subset E′ ⊆ E of the elements
with |E′| = O (m lnn/k), and run the sorting algorithm only

on E′. Let π̃
′t be the order obtained from this sorting, and

let π
′t be πt restricted to the elements of E′. If α = O (mε1)

for a constant ε1 < ε, for every element e we have that
∣

∣

∣π
′t(e)− π̃

′t(e)
∣

∣

∣ = O (1)

with high probability for n large enough.

(The proof of Lemma 28 is similar to the proof of Lemma 3
in [2], considering that we are sorting O (m lnn/k) elements

and each pair of consecutive elements in π
′t has probability

at most 2α/m to swap at each time step.)
We can then use two sorting algorithm in parallel: one

sorts all the m elements in the odd steps, while the other
one takes the first O

(

m lnn
k

)

elements produced by the sort-
ing of all elements, and sort them in the even steps. If we
can build a basis using only the elements considered by the
second sorting algorithm, we produce that basis in output,
otherwise we return the basis built on the order produced
by sorting all elements. Using the same analysis of previous
section, we obtain the following:

Theorem 29. If α = O (mε1) for a constant ε1 < ε, the
error D is O (1) with high probability.

