
Research Articles

MADMX: A Strategy for Maximal Dense Motif Extraction

ROBERTO GROSSI,1 ANDREA PIETRACAPRINA,2 NADIA PISANTI,1

GEPPINO PUCCI,2 ELI UPFAL,3 and FABIO VANDIN3

ABSTRACT

We develop, analyze, and experiment with a new tool, called madmx, which extracts fre-
quent motifs from biological sequences. We introduce the notion of density to single out the
‘‘significant’’ motifs. The density is a simple and flexible measure for bounding the number
of don’t cares in a motif, defined as the fraction of solid (i.e., different from don’t care)
characters in the motif. A maximal dense motif has density above a certain threshold, and
any further specialization of a don’t care symbol in it or any extension of its boundaries
decreases its number of occurrences in the input sequence. By extracting only maximal
dense motifs, madmx reduces the output size and improves performance, while enhancing
the quality of the discoveries. The efficiency of our approach relies on a newly defined
combining operation, dubbed fusion, which allows for the construction of maximal dense
motifs in a bottom-up fashion, while avoiding the generation of nonmaximal ones. We
provide experimental evidence of the efficiency and the quality of the motifs returned by
madmx.

Key words: algorithms, motifs extraction.

1. INTRODUCTION

The discovery of frequent patterns (motifs) in biological sequences has attracted wide interest in

recent years, due to the understanding that sequence similarity is often a necessary condition for

functional correlation. Among other applications, motif discovery is an important tool for identifying reg-

ulatory regions and binding sites in the study of functional genomics. From a computational point of view, a

major complication for the discovery of motifs is that they may feature some sequence variation without loss

of functionalities. The discovery process must therefore target approximate motifs, whose occurrences are

similar but not necessarily identical. Approximate motifs are often modeled through the use of the don’t care

character in certain positions, which is a wild card matching all characters of the alphabet, called solid

characters (Parida, 2008).

Finding interesting approximate motifs is computationally challenging. The output may explode com-

binatorially for an increasing number of don’t cares and/or a decreasing value of the minimum frequency

threshold. This explosion is not mitigated if the discovery targets are just the maximal motifs—a subset of

1Dipartimento di Informatica, Università di Pisa, Italy.
2Dipartimento di Ingegneria dell’Informazione, Università di Padova, Italy.
3Department of Computer Science, Brown University, Providence, Rhode Island.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 18, Number 4, 2011

Mary Ann Liebert, Inc.

Pp. 535–545

DOI: 10.1089/cmb.2010.0177

535

the motifs which implicitly represents the full set. Even if the final output is not too large, partial data

during the intermediate steps might lead to memory saturation or to extensive computation.

In this paper, we focus on the discovery of approximate motifs, which contain blocks of solid characters

(solid blocks) separated by one or more don’t cares. We propose a general approach for controlling the

number of don’t cares in these motifs. Specifically, we introduce the notion of dense motif, a motif where

the fraction of solid characters is above a given threshold. Our density notion is flexible and general, since

it allows for arbitrarily long runs of don’t cares as long as the fraction of solid characters in the pattern is

above the threshold. The rationale is that sparse motifs are less interesting in biological sequences, unlike

what happens to frequent itemsets in baskets (where any subsets of correlated items are of interest). We

define a natural notion of maximality for dense patterns and devise an efficient algorithm, called madmx

(pronounced Mad Max), which performs complete maximal dense motif extraction from an input sequence,

with respect to user-specified frequency and density thresholds.

The key technical result at the core of our extraction strategy is a closure property which affords the

complete generation of all maximal dense motifs in a breadth-first fashion, through an apriori-like strategy

(Agrawal and Srikant, 1994). It starts from a relatively small set of solid blocks, and then repeatedly applies

a suitable combining operator, called fusion, to pairs of previously generated motifs. In this fashion, our

strategy avoids the generation and consequent storage of intermediate patterns which are not in the output

set, which ensures time and space complexities polynomial in the combined size of the input and the output.

The problem of motif discovery and its variants have been addressed by a large body of literature in the

last decade (Parida, 2000; Apostolico and Parida, 2004; Pisanti et al., 2005; Apostolico and Tagliacollo,

2007, 2009; Ukkonen, 2007; Morris et al., 2008; Arimura and Uno, 2008; Apostolico et al., 2009), and an

excellent survey of known results can be found in Parida (2008). In order to alleviate the computational

burden of motif extraction and to limit the output to the most promising or interesting discoveries, some

works combine the traditional use of a frequency threshold with restrictions on the flexibility of the

extracted motifs, often captured by limitations on the number of occurring don’t cares.

In a recent work, Apostolico et al. (2009) studied the extraction of extensible motifs, comprising standard

don’t cares and extensible wild cards. The latter are spacers of variable length that can take different size

(within pre-specified limits) in each occurrence of the motif. An efficient tool, called varun, is devised in

Apostolico et al. (2009) for extracting all maximal extensible motifs (according to a suitable notion of

maximality defined in the article) which occur with frequency above a given threshold s and with upper

limits D on the length of the spacers. varun returns the extracted motifs sorted by decreasing z-score, a

widely adopted statistical measure of interestingness. The authors demonstrate the effectiveness of their

approach both theoretically, by proving that each maximal motif features the highest z-score within the

class of motifs it represents, and experimentally, by showing that the returned top-scored motifs comprise

biologically relevant ones when run on protein families and dna sequences. It has to be remarked that the

motifs studied in our work are rigid, in the sense that extensible wild cards are not allowed.

An alternative way of limiting the number of don’t cares in a motif has been explored in Rigoutsos and

Floratos (1998). The authors define hL,Wimotifs, for L�W, where at least L solid characters must occur in each

substring of length W of the motif. They propose a strategy for extracting hL,Wimotifs which are also maximal,

although their notion of maximality is not internal to the class of hL,Wimotifs. As a consequence, the algorithm

is not complete, since it disregards all those hL,Wi motifs that are not subsumed by a maximal hL,Wi one.

We performed a number of experiments on madmx to assess the biological significance of maximal

dense motifs and to compare madmx against its most recent and close competitor varun. For the first

objective, we used madmx to extract maximal dense motifs from a number of human dna fragments. We

compared the output set against those in RepBase (Jurka et al., 2005), the largest repository of repeti-

tive patterns for eukaryotic species, using repeatmasker (Smit et al., 1996), a popular tool for masking

repetitive dna. The experiments show that all of our returned motifs are occurrences of patterns in

RepBase, and fully characterize the family of sine/alu repeats (and partially the line/l1 family). This

provides evidence that the notion of density, when applied to rigid motifs, captures biological significance.

Next we compared the z-score performance of madmx and varun. We ran both algorithms on several

families of dna fragments, limiting varun to the generation of rigid motifs and setting the parameters so as

to obtain comparable output sizes, with motifs listed by decreasing z-score. The experiments show that the

top-m highest-ranking motifs returned by madmx almost always feature higher z-scores than the corre-

sponding top-m ones returned by varun, even for large values of m, with only a modest increase in running

time, which may be partly due to the fact that coding of madmx is yet to be optimized.

536 GROSSI ET AL.

This article is organized as follows. In Section 2, several technical definitions and properties of

motifs with don’t cares are given. Section 3 proves the closure property at the base of madmx and

provides a high-level description of the algorithm. In Section 4, the experimental validation of madmx

is presented.

2. PRELIMINARY DEFINITIONS AND PROPERTIES

Let S be an alphabet of m characters and let s¼ s[0]s[1] . . . s[n� 1] be a string of length n over S. We

use s[i . . . j] to denote the substring s[i]s[iþ 1] � � � s[j] of s, for i� j. Characters in S are also called solid

characters. We use � 62 R to denote a distinguished character called wild card or don’t care character. Let e
denote the empty string. A pattern x is a string in {e}[S[S(S[{ * })*S. However, whenever necessary,

we will assume that patterns are implicitly padded to their left and right with arbitrary sequences of don’t

care characters.

Given two patterns x, y we say that y is more specific than x, and write x� y, iff for every i� 0 either

x[i]¼ y[i] or x[i]¼ *. If x� y and x= y, we write that x� y. Given two patterns x, y, we say that x occurs in

y at position ‘ or, alternatively, that y contains x iff x � y[‘ . . . ‘þ jxj � 1]. If x� y we say that y strictly

contains x. For a string s, the location list Lx of a pattern x in s is the complete set of positions at which x

occurs in s. We refer to f (x)¼ jLxj as the frequency of pattern x in s. (Note that f (e)¼ n.) As in Ukkonen

(2007), the translated representation of the location list Lx¼fl0, l1, l2, . . . , lkg is s(Lx)¼fl1� l0,

l2� l0, . . . , lk � l0g. Given two patterns x, y, we say that y subsumes x in s if f (x)¼ f (y) and y contains x. As

a consequence, y subsumes x if and only if s(Lx)¼ s(Ly). A pattern x is maximal if it is not subsumed by

any other pattern y. (We observe that this notion of maximality coincides with that of Pisanti et al., 2005.)

Given a pattern x, its maximal extensionM(x) is the maximal pattern that subsumes x, which can be shown

to be unique (Pisanti et al., 2005).

In what follows, we call solid block a string in Sþ and a don’t care block a string in {*}þ. Furthermore,

given a pattern x, the number of don’t care characters contained in x is denoted by dc(x).

Definition 1. The density d(x) of x is: d(x)¼ 1� dc(x)/jxj. Given a (density) threshold r, 0< r� 1, we

say that a pattern x is dense if d(x)� r.

Note that a solid block is a dense pattern with respect to every threshold r.

We concentrate our attention on dense patterns that are not subsumed by any other dense pattern: they

are the most interesting dense representatives in the equivalence classes induced by the relation that puts

any two dense patterns x and y together if and only if s(Lx)¼ s(Ly), as defined below.

Definition 2. A dense pattern x is a maximal dense pattern in s if it is not subsumed by any dense

pattern x0= x.

Observe that a maximal dense pattern x needs not be a maximal pattern in the general sense, since M(x)

might be a nondense pattern. However, every dense pattern x is subsumed by at least one maximal dense

pattern. In fact, it is easy to see that all of the maximal dense patterns that subsume x are dense substrings of

M(x), namely, those that contain x and are not substrings of any other dense substring ofM(x). We want to

stress that there might be several maximal dense patterns that subsume x. As an example, for r¼ 2/3, the

dense pattern x¼B in the string S¼AdBeCfAgBhC is subsumed by maximal dense patterns A * B and

B * C, while M(x)¼A � B � C is not dense.

Definition 3. Given a frequency threshold s and a density threshold r, a pattern x is a dense maximal

motif in s if x is a maximal dense pattern in s with respect to r, and f (x)� s. A dense maximal motif for

r¼ 1 is also referred to as maximal solid block.

Problem of interest. We are given an input string s, a frequency threshold s, and a density threshold r.

Find all the maximal dense motifs in s.

In the example above, the maximal dense motifs for s¼ 2, r¼ 2/3 are A * B and B * C. In the rest of the

article, we will omit referencing the input string s when clear from the context.

MADMX: A STRATEGY FOR MAXIMAL DENSE MOTIF EXTRACTION 537

3. AN ALGORITHM FOR MAXIMAL DENSE MOTIF EXTRACTION

In this section, we describe our algorithm, called madmx for maximal dense motif extraction. The

algorithm adopts a breadth-first apriori-like strategy (Agrawal and Srikant, 1994), similar in spirit to the

one developed in Apostolico et al. (2009), using maximal solid blocks as building blocks. Indeed, an

important property of maximal dense patterns, which we will exploit in our mining strategy, is that all of

their solid blocks are maximal solid blocks. The following proposition extends a similar result holding for

arbitrary maximal patterns (Ukkonen, 2007; Pisanti, 2002).

Proposition 1. Let x be a maximal dense pattern with respect to a density threshold r, and let

b¼ x[i . . . j] be any solid block in x such that x[i� 1]¼ x[jþ 1]¼ *, for j� i. Then, b is a maximal solid

block.

Proof. Let us assume by contradiction that b is not a maximal solid block. This means that there must

exist another solid block b0= b which subsumes b, that is, such that f (b)¼ f (b0) and there exists ‘ with

0� ‘� jb0j � jbj, for which b¼ b0[‘ . . . ‘þ jbj � 1]. Note that it must be jb0j> jbj, hence we have that ‘> 0

or ‘þ jbj< jb0j. W.l.o.g, assume that ‘> 0, whence b0[‘� 1]= * (the case ‘þ jbj< jb0j is analogous).

Consider now x0, which is equal to x except that the * symbol preceding b inside x is replaced by b0[‘� 1] in

x0. Note that x0 is a dense pattern since x is so. Since f (x)¼ f (x0), because f (b)¼ f (b0), and x0 contains x by

construction, then x0 subsumes x, which contradicts the maximality of x. &

madmx begins by extracting the maximal dense motifs from the maximal extensions of the maximal

solid blocks. It then operates by repeatedly combining together, in a suitable fashion, pairs of maximal

dense motifs, and extracting less frequent maximal dense motifs from these combinations. The combining

operation is called fusion and is a key notion for the algorithm. Below, we first define fusion for characters,

and then extend it to patterns.

Definition 4. Given three characters c, c1, c2 2 R [f�g, we say that c is the fusion of c1 and c2, and

write c¼ c1! c2, if one of the following holds:

1. c¼ c1¼ c2;

2. c1¼ *, c¼ c2= *;

3. c¼ c1= *, c2¼ *.

Observe that c1! c2 is not defined when c1 and c2 are different solid characters. The above notion of fusion

generalizes to patterns as follows.

Definition 5. Given three patterns x, y, z and an integer d, we say that z is the d-fusion of x and y, and

write z¼ x!d y, if z can be obtained by removing the leading and trailing don’t care characters from the

pattern m defined as m[i]¼ x[iþ d]! y[i], for all indices i.

Observe that x!d y is defined only when the involved individual character fusions are defined.

The breadth-first strategy adopted by madmx crucially relies on the following theorem, which highlights

the structure of dense motifs.

Theorem 1. Let x be a maximal dense motif with dc(x)> 0. Then:

(a) there exists a maximal solid block b� x such that M(x)¼M(b), or

(b) there exist two maximal dense motifs y1,y2 such that the following conditions hold:

	 M(x)¼M(y1 5d y2) for some d;
	 there are two maximal solid blocks b1, b2 in x and an integer d̂d 4 0 such that b1 is a maximal solid

block in y1, b2 is a maximal solid block in y2, and b1 �d̂d b2 � y1 5d y2

	 f (x)<min{f (y1), f (y2)};

For the proof of Theorem 1, we need to define another type of pattern combination, namely the operation of

merge between two patterns, which is similar to the one introduced in Pisanti et al. (2005). Given two

538 GROSSI ET AL.

characters c1, c2, we define the operator
 between them such that c1
 c2¼ * , if c1= c2, and

c1
 c2¼ c1¼ c2, otherwise.

Definition 6. Given two patterns x, y and an integer d, the d-merge of x and y is the pattern z¼ x
d y

which can be obtained by removing all leading and trailing don’t cares from the pattern m defined as

m[i]¼ x[iþ d]
 y[i] for all i.

We want to stress the difference between the notions of merging and d-fusing: the merge of two patterns x,

y is always well defined and more general than x, y, while the d-fusion of x, y may not exist and, if it does, is

more specific than x, y.

For the proof of Theorem 1, we also need the property established by the following lemma.

Lemma 1. Let x and y be maximal patterns, and d be an integer such that z¼ x
d y is a nonempty

pattern. Then z is maximal. Moreover, if z= x (resp., z= y) then f (z)> f (x) (resp., f (z)> f (y)).

Proof. First we prove that z is maximal. By contradiction, suppose that this is not the case. Then, there

exists a position i such that z[i]¼ * can be replaced by a solid character c without decreasing the frequency of

the pattern. (Note that the position of the substitution can be to the left of the first character in z or to the right of

the last character in z.) Since z is contained both in x and y, every occurrence of x and y in the string gives raise

to an occurrence of z. Hence, every occurrence of x (resp., y) in the string, contains c in its (iþ d)th (resp., ith)

position. Therefore, by maximality of x and y, it must be z[i]¼ x[iþ d]¼ y[i]¼ c, which is a contradiction.

The relations between the frequencies of x,y and z follow trivially from their maximality. &

We are now ready to prove Theorem 1.

Proof. Given a pattern x and two nonnegative integers i� j, let x�[i . . . j] denote the pattern obtained by

removing all the leading and trailing don’t care characters from x[i . . . j]. We first show that there exists an

index s1, with 0< s1< jxj � 1, such that x[s1]¼ * and both x�[0 . . . s1� 1] and x�[s1þ 1 . . . jxj � 1] are

dense. As a first case, assume that d(x[0 . . . j]) � q, for every 0� j< jxj, and let s1< jxj � 1 be the position

in x of the rightmost don’t care. Thus, d(x[0 . . . s1� 1]) � q and d(x[s1þ 1 . . . jxj � 1])¼ 1 � q. Otherwise,

let s1¼ minfs : d(x[0 . . . s])5 qg. Then, it must be that x[s1]¼ * and d(x[0 . . . s1� 1]) � q. Moreover,

since x is dense and d(x[0 . . . s1])5 q, we must have d(x[s1þ 1 . . . jxj � 1]) � q, or otherwise

d(x)¼ 1� dc(x[0 . . . s1])þ dc(x[s1þ 1 . . . jxj � 1])

jxj

¼ (jx[0 . . . s1]j � dc(x[0 . . . s1]))þ (jx[s1þ 1 . . . jxj � 1]j � dc(x[s1þ 1 . . . jxj � 1]))

jxj

5
q(jx[0 . . . s1]j þ jx[s1þ 1 . . . jxj � 1]j)

jxj ¼ q

which contradicts the assumption on d(x).

We call the pair of dense patterns x�[0 . . . s1� 1] and x�[s1þ 1 . . . jxj � 1] a level-1 decomposition of x

(observe that many such decompositions may exist). Now, consider the following iterative process to obtain

a sequence of decompositions of x of increasing level, starting from the level-1 decomposition. Initially, set

i¼ 1, ‘1¼ 0 and r1¼ jxj � 1:

1. If both x�[‘i . . . si� 1] and x�[siþ 1 . . . ri] have frequency strictly greater than f (x), or at least one of

x�[‘i . . . si� 1] and x�[siþ 1 . . . ri] is a solid block with frequency equal to f (x), then the process

terminates.

2. Otherwise, let y¼ x�[‘iþ 1 . . . riþ 1] be one (arbitrarily chosen) of x�[‘i . . . si� 1] or x�[siþ 1 . . . ri]

which is not a solid block and has frequency equal to f (x). Since y is dense, there exists an index siþ1

such that ‘iþ1< siþ1< riþ1 and both x�[‘iþ 1 . . . siþ 1� 1] and x�[siþ 1þ 1 . . . riþ 1] are dense. Call

these two patterns the level-(iþ 1) decomposition of x. Set i¼ iþ 1 and go to Step 1.

Suppose that the decomposition process ends by finding a solid block b in x, hence a maximal solid block by

Proposition 1, with f (b)¼ f (x). Then,M(b)¼M(x) and the theorem follows. Otherwise, let j be the last

MADMX: A STRATEGY FOR MAXIMAL DENSE MOTIF EXTRACTION 539

level of the decomposition. Then, f (x)5 min f (x�[‘j . . . sj� 1]), f (x�[sjþ 1 . . . rj])
� �

. In the latter case, as

explained in Section 2 (after Definition 2), we can determine two maximal dense patterns y1, y2 such that y1

subsumes x�[‘j . . . sj� 1] and y2 subsumes x�[sjþ 1 . . . rj]. Therefore, M(y1)¼M(x�[‘j . . . sj� 1]),

M(y2)¼M(x�[sjþ 1 . . . rj]), and f (x)<min{f (y1), f (y2)}. Let b1 (resp., b2) be the last (resp., the first) solid

block of x�[‘j . . . sj� 1] (resp., x�[sjþ 1 . . . rj]). Observe that by construction b1 and b2 are maximal solid

blocks and there exists an integer d̂d such that b1 �d̂d b2 is a substring of x.

Next, we show that there exists an integer d such that the d-fusion y1!d y2 is well defined, contains

b1 �d̂d b2, andM(y1 5d y2)¼M(x). We proceed as follows. First, we show thatM(x) contains both y1 and

y2. To this end, let us ‘‘align’’M(x) andM(y1) with respect to the occurrence of x�[‘j . . . sj� 1], which is

contained in both, and let p the integer such thatM(x)[iþ p] is aligned withM(y1)[i]. Now, assume for the

sake of contradiction, that there exists an index j such that M(y1)[j] corresponds to a position of y1, it is

solid and M(y1)[j] 6¼ M(x)[jþ p]. This implies that z¼M(x)
pM(y1) 6¼ M(y1). Moreover, z contains

x�[‘j . . . sj� 1], and, by Lemma 1, it is maximal and has frequency strictly greater than f (y1), which

is impossible because we have chosen y1 such that M(x�[‘j . . . sj� 1])¼M(y1) and therefore

f (x�[‘j . . . sj� 1])¼ f (y1). A similar argument shows that M(x) contains y2.

Since y1 and y2 are contained inM(x), there must exist a d such that y1!d y2 is also contained inM(x),

and can be aligned with M(x) in such a way to match the blocks b1 and b2 of y1 and y2 with the

corresponding blocks in M(x). Moreover, f (y1 5d y2) � f (M(x))¼ f (x). However, since y1!d y2 con-

tains both x�[‘j . . . sj� 1] and x�[sjþ 1 . . . rj], it contains also x�[‘j . . . rj], which, by the decomposi-

tion process, has frequency equal to f (x). Therefore, f (y1!d y2)� f (x), and the theorem follows since

f (y1!d y2)¼ f (x). &

In essence, Theorem 1 guarantees that we can find any maximal dense motif x either within M(b), for

some maximal solid block b, or by d-fusing two higher-frequency maximal dense motifs y1, y2, for some

d, finding z¼M(y1 5d y2) and then possibly ‘‘trimming’’ z on both sides to obtain x. Also, the theorem

shows that in the latter case the trimmed sequence must contain at least one maximal solid block b1 of y1

and one maximal solid block b2 of y2. Moreover, we can disregard those d-fusions y1!d y2 for which no

pair of maximal solid blocks b1 of y1 and b2 of y2 exists such that b1 �d̂d b2 is contained in y1!d y2 for

some d̂d 4 0.

Algorithm madmx, whose pseudocode is reported in Figure 1, implements the strategy inspired by

Theorem 1. It employs three (initially empty) sets previous, current, and next. In line 2, the algorithm first

stores the maximal solid blocks b in s for the given frequency s in the set blocks (see Section 2). Then, it

extracts all of the appropriate maximal dense motifs from M(b) in lines 3–6, using the function extract-

MaximalDense, as implied by Theorem 1(a). Finally, lines 7–16 implement the strategy as implied by

Theorem 1(b). (In line 10, a fusion y1!d y2 is considered valid if it satisfies the second property of

Theorem 1(b).) In practice, the function extractMaximalDense(M(x)) produces all the maximal dense

patterns contained inM(x) and that contains x. The second property of Theorem 1(b) guarantees that even

with this restriction all the maximal dense motifs will be produced in output.

3.1. Efficient implementation of MADMX

An important issue for the efficiency of madmx is that it needs to compute the exact frequency of each

generated pattern. For what concerns the fusion operation, we observe that x1!d x2 is valid if and only if

there exist ‘1 2 Lx1
and ‘2 2 Lx2

such that ‘1� ‘2¼ d; thus, a simple computation on the pairs

(‘1, ‘2) 2 Lx1
·Lx2

is sufficient to yield the frequencies of all the valid fusions of two patterns.

Let z¼ x1!d x2. Observe that while the exact frequency of a maximal dense pattern w extracted from

M(z) is equal to f (z) in case w contains z in its entirety, for a maximal dense pattern w extracted fromM(z)

which does not contain z we can only conclude that f (w)� f (z). In this latter case, naively determining the

actual frequency may be computationally expensive. Therefore, in the course of the algorithm we generate

two classes of maximal dense motifs: those whose exact frequencies are known, and those for which only a

lower bound to their frequencies is known.

We modify function extractMaximalDense so to label each generated motif as either final or tentative

depending on whether its frequency is exact or only estimated through a lower bound. Note that for each

tentative dense motif w Theorem 1 ensures that there exist two maximal dense motifs x1, x2 and a valid d-

fusion x1!d x2 such that f (M(x1 5d x2))¼ f (w). Hence, we are assured that if w is generated from x1 and

540 GROSSI ET AL.

x2 and the true frequencies of x1 and x2 are known, the estimated frequency for w is also the true one, even

if w is labeled as tentative.

Note that algorithm madmx may generate the same maximal dense motif w several times, from fusions of

different pairs of patterns. The algorithm can be modified in such a way that each time a tentative motif w is

(re)generated, if its exact frequency f (w) is inferred then w is (re)labeled final, otherwise, the lower bound

to f (w) is updated, if necessary. A further modification to the algorithm consists in requiring that x1 and x2

in Lines 8 and 9 of the pseudocode be final. Whenever the set current contains no final motifs, we can label

as final the motif in current with the highest lower bound to its frequency, and continue with the generation.

This is justified by the following proposition.

Proposition 2. Suppose that at some point during the execution of madmx all motifs in the set current

are labeled tentative, and let w be the motif belonging to current with the highest lower bound ‘ on its

frequency. Then f (w)¼ ‘.

Proof. For the sake of contradiction, assume that f (w)= ‘. In particular, it must be f (w)>‘. From

Theorem 1, we know that there must be two dense motifs x1, y1 with min {f (x1), f (y1)}> f (w) and an

integer d such that w can be obtained, with its exact frequency, fromM(x1 5d y1). If both x1 and y1 have

already been moved to the previous list from Algorithm madmx, we have f (w)¼ ‘. The only possibility is

then that at least one of x1 and y1 has not been moved to previous. Let x1 be this dense motif. Then x1 is

either a tentative motif or has not been generated by any fusion yet. Applying the same reasoning to x1, we

have that there exists two dense motifs x2, y2 such that at least one of them (let say x2) has not been put in

previous, min {f (x2), f (y2)}> f (x1) and x1 can be obtained, with its real frequency, from a valid fusion of

x2, y2. Iterating this reasoning, we can find a sequence x1, x2, . . . of dense motifs such that

1. Vi, xi has not been put in previous,

2. f (xiþ1)> f (xi), and

3. xi is derived from the fusion of xiþ1 with another pattern.

FIG. 1. Pseudocode of algorithm

madmx.

MADMX: A STRATEGY FOR MAXIMAL DENSE MOTIF EXTRACTION 541

Theorem 1 implies that this sequence must be finite, and that the last element of this sequence, ~xx, is either a

solid block or can be found in the maximal extension of a solid block. Therefore, ~xx has been generated by

the algorithm (lines 3–5) with its correct frequency, thus it is in previous, that is a contradiction. &

A crude upper bound on the running time of madmx can be derived by observing that, for each pair of

dense maximal motifs in output, the time spent during all the operations concerning that pair is (naively)

O (n3), where n is the length of the input string. If P patterns are produced in output, the overall time

complexity is O (n3P2).

4. EXPERIMENTAL VALIDATION OF MADMX

We developed a prototype-based implementation of madmx in Cþþ also including an additional feature

which eliminates, from the set of initial maximal solid blocks, those shorter than a given threshold min‘.

The purpose of the latter heuristics is to speed up motif generation driving it towards the discovery of

(possibly) more significant motifs, with the exclusion of spurious, low-complexity ones. (The code is

available for download at www.dei.unipd.it/wdyn/?IDsezione¼4534.)

We performed two classes of experiments to evaluate how significant is the set of motifs found using our

approach. The first class of experiments is described in Section 4.1. It compares the motifs extracted by

madmx with the known biological repetitions that are available in RepBase (Jurka et al., 2005)—a very

popular genomic database—using the repeatmasker tool described in Smit et al. (1996). The second class

of experiments is described in Section 4.2 and aims at comparing the motifs extracted by madmx with those

extracted by varun using the same z-score metric employed in Apostolico et al. (2009) for assessing their

relative statistical significance.

4.1. Evaluating significance by known biological repetitions

RepBase (Jurka et al., 2005) is one of the largest repositories of prototypic sequences representing

repetitive dna from different eukaryotic species, collected in several different ways. RepBase is used as a

reference collection for masking and annotating repetitive dna through popular tools such as re-

peatmasker (Smit et al., 1996). The latter screens an input dna sequence s for simple repeats and low

complexity portions, and interspersed repeats using RepBase. Sequence comparisons are performed

through Smith-Waterman scoring (Smith and Waterman, 1981). repeatmasker returns a detailed anno-

tation of the repeats occurring in s, and a modified version of s in which all of the annotated repeats are

masked by a special symbol (N or X). With the current version of RepBase, on average, almost 50% of

a human genomic dna sequence will be masked by the program (Smit et al., 1996).

Most of the interspersed repeats found by repeatmasker belong to the families called sine/alu and

line/l1: the former are Short INterspersed Elements that are repetitive in the dna of eukaryotic genomes

(the Alu family in the human genome); the latter are Long Interspersed Nucleotide Elements, which are

typically highly repeated sequences of 6K–8K bps, containing rna polymerase II promoters. The line/l1

family forms about 15% of the human genome.

We have conducted an experimental study using madmx and repeatmasker on Human Glutamate

Metabotropic Receptors hgmr 1 (410277 bps) and hgmr 5 (91243 bps) as input sequences. We have

downloaded the sequences from the March 2006 release of the UCSC Genome database (http://
genome.ucsc.edu), with genomic coordinates hg18_dna range¼chr6:146385472–146805427 (hgmr 1)

and hg18_dna range¼chr11:87872389–88443761 (hgmr 5). repeatmasker version was open-3.2.7, sen-

sitive mode, with the query species assumed to be homologous; it ran using blastp version 2.0a19MP-

WashU, and RepBase update 20090120.

The experiments to assess the biological significance of the maximal dense motifs extracted by madmx

involved three separate stages.

In the first stage, we ran repeatmasker on the input sequences hgmr 1 and hgmr 5, searching for

interspersed repeats using RepBase. We considered the summary (tbl file) provided by repeatmasker and

one of its output files (.out) containing the list of found repeats: for each occurrence, the .out file provides the

substring s[i . . . j] of the input sequence s which is locally aligned with (a substring of) the repeat and is

annotated with extra information (which part of the repeat is aligned, its Smith-Waterman score, and so on).

542 GROSSI ET AL.

In the second stage, we ran madmx on the same DNA sequences, with density threshold r¼ 0.8,

frequency threshold s¼ 4, and min‘¼ 15. In order to filter out simple repeats and low complexity portions,

which are dealt with by repeatmasker without resorting to RepBase, we modified madmx eliminating

periodic maximal solid blocks (with short periods), which are the seeds of simple repeats. Then, we

identified the occurrences of the motifs returned by madmx in the input sequences, using repeatmasker as

a pattern matching tool (i.e., replacing RepBase with the set of motifs returned by madmx as the database

of known repeats). The underlying idea behind this use of repeatmasker was to employ the same local

alignment algorithms, so to make the comparison fairer.

In the third stage, we cross-checked the intervals associated with the occurrences of the RepBase
repeats against those associated with the occurrences of our motifs. Specifically, we mapped the motif

occurrences in s (seen as intervals [i0 . . . j0] found by madmx) into the repeats (seen as intervals [i . . . j]

found by repeatmasker) using an approximate notion of interval inclusion. Specifically, a motif occur-

rence [i0 . . . j0] is mapped into a repeat [i . . . j] whenever [i0, j0]� [i� d, jþ d] and [i, j]� [i0 � d, j0 þ d], for a

very small constant d. Surprisingly, through the above mapping madmx was able to identify and charac-

terize all of the intervals of the known sine/alu repeats in hgmr 1 and hgmr 5 (respectively, 56 repeats

plus an extra unclassified one for hgmr 1, and 20 repeats plus an extra unclassified one for hgmr 5). The

remaining occurrences of the motifs permitted to identify 29 repeats out of 78 of the line/l1 family in

hgmr 1.

4.2. Evaluating significance by statistical z-score ranking

The z-score is the measure of the distance in standard deviations of the outcome of a random variable

from its expectation. Consider a dna sequence s of length n as if it were generated by a stationary i.i.d.

source with equiprobable symbols. An approximation to the z-score for a motif of length m that contains

c solid characters and appears f times in s is given by Z¼ f � (n�mþ 1) · pffi
(n�mþ 1) · p · (1� p) ,
p , where p¼ (1/4)c. This

metric was used in Apostolico et al. (2009) to assess the significance of the motifs extracted by varun and

to rank them in the output.

We employed the code for varun provided by the authors to extract the rigid motifs from the dna

sequences analyzed in Apostolico et al. (2009). We then ran madmx on the same sequences (provided to us

by the authors of Apostolico et al., 2009) using the same frequency parameters, and setting the minimum

density threshold r in such a way to obtain a comparable yet smaller output size. In this fashion, we tested

the ability of madmx to produce a succinct yet significant set of motifs, by virtue of its more flexible notion

of density.

The results are shown in Table 1. For varun we used D¼ 1, thus allowing at most one don’t care

between two solid characters, and ran madmx with min‘¼ 1, so to obtain the complete family of maximal

dense motifs. In the table, there is a row for each sequence (identified in the first column). Each sequence,

whose total length is reported in the second column, is obtained as the concatenation of a number of smaller

subsequences, reported in the third column. On each sequence, both tools were run with the same frequency

threshold s, and the table reports for both the output size in terms of the number of motifs returned and the

execution time in seconds. Also, for madmx, the table reports the density threshold r used in each

experiment.

For each experiment, we compared the best top-m z-scores, with m¼ 10, 50, and 100, as follows. Note

that, in general, the top-m motifs found by madmx and varun differ. Thus, we let zi
M (resp., zi

V) be the

Table 1. Results of the Comparison with varun

varun madmx Best top-m z-scores

Name Length No. s jOutputj Time r jOutputj Time m¼ 10 m¼ 50 m¼ 100 m* m̂m

ace2 500 1 2 1866 3s 0.7 1762 18s 10 50 100 1571 1067

ap1 500 1 2 1555 1s 0.7 1304 5s 10 50 100 392 13

gal4 3000 6 4 9764 12s 0.67 7606 67s 10 49 99 16 16

gal4(*) 3000 6 4 9764 12s 0.65 11733 191s 10 50 100 9764 301

uasgaba 1000 2 2 4586 30s 0.70 4194 90s 10 50 100 175 175

MADMX: A STRATEGY FOR MAXIMAL DENSE MOTIF EXTRACTION 543

z-score of the ith motif in decreasing z-score order obtained by madmx (resp., varun). For each m, the

table reports how many times it was zi
M 4 zi

V , for 1� i�m. Also, column m* (resp., column m̂m) gives the

maximum m such that zi
M � zi

V (resp., zi
M 4 zi

V) for every 1� i�m.

Even when madmx is calibrated to yield a slightly smaller output, the quality of the motifs extracted,

as measured by the z-score, is higher than those output by varun. Indeed, for sequences ace2 and

uasgaba, a very large prefix of the top-ranked motifs extracted by madmx features strictly greater z-

scores of the corresponding top-ranked ones extracted by varun. For all of the four sequences, at least the

thirteen top-ranked motifs have this property. To shed light on the slightly worse performance of madmx on

gal4, we re-ran madmx with a different density threshold, so to obtain a slightly larger output (see row

gal4(*)). In this case, the top-301 motifs extracted by madmx have z-score strictly greater than the corre-

sponding motifs extracted by varun, while the execution time still remains acceptable.

For all runs, the top z-score of a motif discovered by madmx is considerably higher than the one returned

by varun. Specifically, on ace2 our best z-score is 387,763 versus 12,027 of varun; on ap1, we have

12,027 versus 1,490; on gal4 it is 75 versus 28; on gal4(*) it is 150 versus 28; on uasgaba we have

134,532 versus 67,059. This reflects the high selectivity of madmx, which is to be attributed mostly to

adoption of a more flexible density constraint.

We must remark that madmx (in its current nonoptimized version) is slower than varun, but it still

runs in time acceptable from the point of view of a user. To further investigate the tradeoff between

execution time and significance of the discovered motifs, we repeated the experiments running madmx

with min‘¼ 2 and r¼ 0.65, for all sequences. The running time of madmx was almost halved, while the

small output produced still featured high quality. In fact, for sequences ace2, ap1, and uasgaba the

top-100 motifs extracted by madmx have z-score greater or equal than the corresponding ones returned

by varun.

We also have attempted a comparison between varun and madmx on longer sequences (such as

hgmr 1) at higher frequencies (since, unfortunately, varun does not seem to be able to handle low

frequencies on very long sequences). Even allowing a higher number of don’t cares between solid

characters (D¼ 2) for the motifs of varun, all of the top-m z-scores featured by the motifs extracted by

madmx are greater than or equal to the corresponding scores in the ranking of varun, with m reaching

the size of varun’s output. In fairness, we remark that varun was designed to work at its best on protein

sequences, while madmx’s main target are dna sequences. Hence, these two tools should be regarded as

complementary. Moreover, varun has the advantage of retrieving flexible motifs, while madmx focuses

only on rigid ones.

5. CONCLUSION

In this article, we introduced the notion of density to single out the most relevant motifs during pattern

discovery in biological sequences. We showed how to perform the efficient extraction of maximal dense

motifs and experimented the corresponding software tool madmx on real data sets. The efficiency of our

approach relies on the newly defined operation of fusion, which avoids the generation of nonmaximal

motifs during the intermediate steps of the extraction. The experimental results give evidence of the

efficiency and the quality of the motifs returned by madmx.

ACKNOWLEDGMENTS

We wish to thank Alberto Apostolico and Matteo Comin for providing the code and the sequences used

in Section 4.2, and giving valuable insights on varun; Ben Raphael for suggesting the use of re-

peatmasker; and Roberta Mazzucco and Francesco Peruch for coding madmx. A preliminary version of

this work has been presented in WABI 2010. Support for R.G., A.P., N.P., and G.P. was provided, in part,

by MIUR of Italy under Project AlgoDEEP prot. 2008TFBWL4. Support for A.P. and G.P. was provided, in

part, by the University of Padova under the Strategic Project STPD08JA32 and Project CPDA099949/09.

Support for E.U. was provided, in part, by NSF awards IIS-0325838 and DMI-0600384, and ONR Award

N000140610607. Part of this work was done while F.V. was affiliated to Dipartimento di Ingegneria

dell’Informazione, Università di Padova, Italy.

544 GROSSI ET AL.

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Agrawal, R., and Srikant, R. 1994. Fast algorithms for mining association rules. Proc. 20th VLDB 487–499.

Apostolico, A., Comin, M., and Parida, L. 2009. VARUN: discovering extensible motifs under saturation constraints.

IEEE Trans. Comput. Biol. Bioinform. http://doi.ieeecomputersociety.org/10.1109/TCBB.2008.123.

Apostolico, A., and Parida, L. 2004. Incremental paradigms of motif discovery. J. Comput. Biol. 11, 15–25.

Apostolico, A., and Tagliacollo, C. 2007. Optimal offline extraction of irredundant motif bases. Lect. Notes Comput.

Sci. 4598, 360–371.

Apostolico, A., and Tagliacollo, C. 2008. Incremental discovery of the irredundant motif bases for all suffixes of a

string in O (n2 log n) time. Theor. Comput. Sci. 408, 106–115.

Arimura, H., and Uno, T. 2008. Mining maximal flexible patterns in a sequence. Lect. Notes Comput. Sci. 4914, 307–

317.

Jurka, J., Kapitonov, V.V., Pavlicek, A., et al. 2005. Repbase update: a database of eukaryotic repetitive elements.

Cytogenet. Genome Res. 110, 462–467.

Morris, M., Nicolas, F., and Ukkonen, E. 2008. On the complexity of finding gapped motifs. CoRR abs/0802.0314.

Parida, L. 2000. Some results on flexible-pattern discovery. Lect. Notes Comput. Sci. 1848, 33–45.

Parida, L. 2008. Pattern Discovery in Bioinformatics. Chapman & Hall/CRC, Boca Raton, FL.

Pisanti, N. 2002. Segment-based distances and similarities in genomic sequences [Ph.D. dissertation]. University of

Pisa, Italy.

Pisanti, N., Crochemore, M., Grossi, R., et al. 2005. Bases of motifs for generating repeated patterns with wild cards.

IEEE Trans. Comput. Biol. Bioinform. 2, 40–50.

Rigoutsos, I., and Floratos, A. 1998. Combinatorial pattern discovery in biological sequences: the TEIRESIAS algo-

rithm. Bioinformatics 14, 55–67.

Saha, S., Bridges, S., Magbanua, Z.V., et al. 2008. Empirical comparison of ab initio repeat finding programs. Nucleic

Acids Res. 36, 2284–2294.

Smit, A.F.A., Hubley, R., and Green, P. 1996. RepeatMasker Open-3.0. Available at: www.repeatmasker.org. Accessed

January 15, 2011.

Smith, T.F., and Waterman, M.S. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

Ukkonen, E. 2007. Structural analysis of gapped motifs of a string. Lect. Notes Comput. Sci. 4708, 681–690.

Address correspondence to:

Dr. Fabio Vandin

Department of Computer Science

Brown University

Providence, RI 02906

E-mail: vandinfa@cs.brown.edu

MADMX: A STRATEGY FOR MAXIMAL DENSE MOTIF EXTRACTION 545

