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Abstract. We study the use of sampling for efficiently mining the top-K
frequent itemsets of cardinality at most w. To this purpose, we define an
approximation to the top-K frequent itemsets to be a family of itemsets
which includes (resp., excludes) all very frequent (resp., very infrequent)
itemsets, together with an estimate of these itemsets’ frequencies with
a bounded error. Our first result is an upper bound on the sample size
which guarantees that the top-K frequent itemsets mined from a random
sample of that size approximate the actual top-K frequent itemsets, with
probability larger than a specified value. We show that the upper bound
is asymptotically tight when w is constant.
Our main algorithmic contribution is a progressive sampling approach,
combined with suitable stopping conditions, which on appropriate inputs
is able to extract approximate top-K frequent itemsets from samples
whose sizes are smaller than the general upper bound. In order to test
the stopping conditions, this approach maintains the frequency of all
itemsets encountered, which is practical only for small w. However, we
show how this problem can be mitigated by using a variation of Bloom
filters.
A number of experiments conducted on both synthetic and real bench-
mark datasets show that using samples substantially smaller than the
original dataset (i.e., of size defined by the upper bound or reached
through the progressive sampling approach) enable to approximate the
actual top-K frequent itemsets with accuracy much higher than what
analytically proved.

1 Introduction

For a dataset D of transactions over an alphabet of items I, the top-K frequent

itemsets is the family of subsets of items, dubbed itemsets, which occur in D with
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frequency greater than or equal to the frequency of the K-th most frequent one.
The extraction of the top-K frequent itemsets is a fundamental primitive which
arises directly in applications from many different domains (e.g., data mining,
networking, and databases), and it is also regarded as a convenient alternative
to the classical data mining problem of computing all itemsets with frequency
above a fixed threshold, since the parameter K allows, in practice, for a better
control on the output size.

For large datasets the mining of top-K frequent itemsets becomes computa-
tionally challenging. In particular, exact algorithms must scan the entire dataset
more than once and if the dataset does not fit completely in main memory, as
is typically the case, disk accesses may slow down the computation to a point
where it becomes impractical. In this paper we consider the use of sampling for
efficiently mining a suitable approximation to the top-K frequent itemsets from
large datasets, and investigate the trade-offs between the sample size and the
accuracy of the approximation.

1.1 Previous work

A few attempts have been made to devise efficient exact algorithms for min-
ing top-K frequent itemsets from static datasets, restricting the mining task to
closed itemsets (i.e., itemsets that have no superset with the same frequency)
[14, 11]. However, these algorithms exhibit limited scalability and are unable to
efficiently handle extremely large inputs.

A number of works in the literature explored the use of sampling in the
context of the classical frequent itemsets mining problem where all itemsets with
frequency above a fixed threshold are required [16, 6, 12, 5, 10, 2]. The idea is to
extract frequent itemsets from a sample of transactions randomly drawn from the
input dataset, where the size of the sample is chosen, possibly much smaller than
the original dataset size, so that the frequent itemsets with respect to the sample
represent a good approximation to the actual frequent itemsets. Upper bounds
on the sample size which guarantee to estimate the frequency of an itemset
with a given accuracy and a given confidence are presented in [16, 6]. However,
these estimates are derived for the individual itemsets identified by the algorithm
and do not bound the probability of not discovering other itemsets of equal or
larger frequencies. Ensuring with high probability that all itemsets sought by the
mining task be discovered is the main challenge in applying sampling to mining.

In [12] the author proposes an algorithm that, by mining a random sample
of the dataset, builds a candidate set of frequent itemsets which contains all the
frequent itemsets with a probability that depends on the sample size. However,
the sample does not guarantee that all itemsets in the candidate set are frequent.
Nevertheless, the set of candidates allows the algorithm to efficiently identify the
set of frequent itemsets with at most two passes on the entire dataset.

The use of progressive sampling for mining frequent itemsets has been studied
in [5, 10]. Progressive sampling entails analyzing increasingly larger samples until
the observed improvement of a certain measure of the accuracy of the sample
with respect to the mining task falls below a specified threshold. An empirical



two-phase sampling method was devised in [2] which first uses a large sample to
estimate the item frequencies accurately, and then uses this information to build,
progressively, a suitable sample for mining the frequent itemsets. We remark
that the aforementioned works do not assess analytically the relation between
the sample size and the accuracy of the approximation to the frequent itemsets
gathered from the sample.

The extraction of top-K frequent itemsets through sampling is a more chal-
lenging task, since the corresponding minimum frequency threshold is not known
in advance. In a recent work [13] sampling is used for extracting, for a fixed
parameter 0 < ε < 1, an approximation of the top-K frequent items from a
sequence of items, which contains no item whose actual frequency is less than
fK − ε, where fK is the actual frequency of the K-th most frequent item. How-
ever, to achieve this result the sample size is defined as a function of fK , which
is unknown. The authors propose an empirical sequential method to estimate
the right sample size. Moreover, the results cannot be directly extended to the
mining of top-K frequent item(set)s from datasets of transactions.

A number of recent papers considered the problem of finding (top-K) frequent
items/itemsets from data streams [4, 7, 1, 8, 15, 3]. In the streaming context, the
entire dataset is scanned (at least) once and sampling is employed to maintain
summary data structures, with small memory footprints, which provide approxi-
mate solutions to the mining task. The accuracy of the approximation is related
to the size of the data structures rather than the actual number of elements
sampled from the input dataset. In this respect, the objective of these works is
slightly different from the one pursued in this paper.

1.2 Our contribution

We present novel results on the effectiveness of sampling for mining top-K fre-
quent itemsets from a transactional dataset. In analogy to [13], we define an
ε-approximation to the top-K frequent itemsets to be a family of itemsets, to-
gether with their estimated frequencies, which excludes all itemsets whose actual
frequency is less than fK − ε and includes all itemsets whose actual frequency
is at least fK + ε, where fK is the actual frequency of the K-th most frequent
itemset. (Note that the latter requirement was not imposed in [13].) Moreover,
the estimated frequency of each itemset in the ε-approximation must be at most
an additive factor ε away from the actual one. We also impose a bound w on
the size of the frequent itemsets to be discovered

We prove an upper bound t on the sample size which guarantees, with prob-
ability at least 1− δ, that an ε-approximation to the top-K frequent itemsets of
size up to w is discovered. The bound is a function of the parameters K, ε, δ,
and of the total number of itemsets of size at most w, but it does not depend
on the number of transactions in the dataset or on fK . We also show that for
w ∈ O(1) the upper bound t is tight, within constant factors, by arguing the
existence of a dataset for which a random sample of size o(t) would not provide
the required ε-approximation with sufficiently high probability.



While the above bounds are tight for worst-case datasets, an adaptive ap-
proach may be able to compute an ε-approximation to top-K frequent itemsets
with smaller samples in some cases. To this purpose, we devise a progressive
sampling approach which extracts the top-K frequent itemsets from increasingly
larger samples until suitable stopping conditions are met or the upper bound t
is hit. A straightforward implementation of our approach requires that in order
to test the stopping conditions, the frequencies of all itemsets encountered be
maintained, which is practical only if the upper bound w on the itemset size is
small. However, we show how this problem can be mitigated by using count-min
filters, which are a variation of Bloom filters.

A number of experiments conducted on both synthetic and real benchmark
datasets show that the family of top-K frequent itemsets mined either from
a random sample of t transactions or from the smaller samples built with the
progressive sampling approach approximates the actual top-K frequent itemsets
with an accuracy and confidence much higher than what analytically proved.
This provides further evidence of the effectiveness of the sampling approach
for the mining task under consideration. Moreover, we show analytically on a
specific artificial dataset and experimentally on a benchmark, that the stopping
conditions employed by the progressive sampling approach are able to stop the
sampling schedule before the sample size t is reached, while maintaining the
same accuracy and confidence bounds on the output.

The rest of the paper is organized as follows. Section 2 formally defines the
notion of ε-approximation to the top-K frequent itemsets. It also introduces
some notation and a technical fact which will be used in the analysis. In Section 3
we present the bound t on the sample size sufficient for performing the mining
task with the specified confidence and show that it is tight when itemsets of
size at most w = O(1) are sought. Section 4 presents the progressive sampling
algorithm. A more efficient implementation of the algorithm through count-min
filters is outlined in Section 5. Section 6 reports the results of the evaluation of
our approach. Section 7 closes the paper with some final remarks.

2 Preliminaries

Consider a dataset D of transactions, where each transaction τ is a subset of a
universe I of n items. Let |τ | denote the number of items in transaction τ . Given
an itemset x ∈ 2I , we use fD(x) (resp., σD(x)) to denote its frequency (resp.,
support) in D, namely, the fraction (resp., number) of transactions containing
x. We consider only itemsets of size at most w, and denote with U(I, w) the
complete family of these itemsets. We define m = |U(I, w)| =

∑w
i=1

(

n
i

)

.
For convenience, we assume a fixed canonical ordering of the itemsets in

U(I, w) by decreasing frequency in D, with ties broken arbitrarily, and label the
itemsets x1, x2, · · · , xm according to this ordering. For a given K, with 1 ≤ K ≤

m, we denote f
(K)
D = fD(xK), and define the set of top-K frequent itemsets of

size at most w (with their respective frequencies) as

TOPK(D, I,K,w) =
{

(x, fD(x)) : x ∈ U(I, w) , fD(x) ≥ f
(K)
D

}

.



In this work we aim at efficiently mining the following approximation to the
set TOPK(D, I,K,w).

Definition 1. Let ε ∈ (0, 1) be a real-valued parameter. An ε-approximation
to TOPK(D, I,K,w) is a set W of K or more ordered pairs (x, f) such that

x ∈ U(I, w), f ∈ [0, 1], and for which the following properties hold:

P1: for each (x, f) ∈ W , fD(x) ≥ f
(K)
D − ε;

P2: for each (x, f) 6∈ W , fD(x) < f
(K)
D + ε;

P3: for each (x, f) ∈ W , |f − fD(x)| ≤ ε.

Given a sample S, we will use fS(x) to denote the frequency of an itemset x
in S, and σS(x) to denote the support of x in S. The following fact will be used
later in the analysis. Due to space constrains, its proof is omitted.

Fact 1 Consider a sample S of t > 0 transactions drawn at random with re-

placement from D. Let x ∈ 2I be an arbitrary itemset. For fixed ε ∈ (0, 1) and

for any itemset y ∈ 2I such that fD(x) ≥ fD(y) + ε we have:

Pr(fS(y) > fS(x)) ≤ e−
ε2

2
t and (1)

Pr(|fS(x)− fD(x)| ≥ ε) ≤ 2e−
ε2

2
t . (2)

3 Upper bound on the sample size

Consider a sample S of t transactions drawn at random with replacement from
D. Theorem 1 below shows that if t is large enough then the set of top-K
frequent itemsets from S, with their respective frequencies in the sample, yields
an ε-approximation to TOPK(D, I,K,w), with a certain probability.

Theorem 1. For fixed ε, δ ∈ (0, 1), let S be a sample of

t =
2

ε2
ln

2m+K(m−K)

δ

transactions drawn at random with replacement from D. Then, W =
TOPK(S, I,K,w) is an ε-approximation to TOPK(D, I,K,w) with probability

at least 1− δ.

Proof. Consider the m itemsets of U(I, w), namely x1, x2, · · · , xm, indexed ac-
cording to the canonical ordering introduced before, and define the follow-
ing property Q: “for every i, j, with 1 ≤ i ≤ K < j ≤ m, such that
fD(xi) ≥ fD(xj) + ε we have fS(xi) > fS(xj)”. We first show that if prop-
erty Q holds then properties P1 and P2 of Definition 1 hold for W . Assume
that Q holds. Then, the frequency in S of any xi, with 1 ≤ i ≤ K, is larger

than the frequency in S of any itemset xj with fD(xj) < f
(K)
D − ε, and this

implies Property P1. As for P2, consider a pair (x, fS(x)) 6∈ W and suppose,



by contradiction, that fD(x) ≥ f
(K)
D + ε, that is x = xi, for some index i with

1 ≤ i < K. If this is the case, since W contains at least K pairs, it must contain
a pair (xj , fS(xj)) with j > K and fS(xj) > fS(xi). This is impossible because
Q holds and fD(xi) ≥ fD(xj) + ε.

We complete the proof by showing that if the sample size t is chosen as
stated, then, with probability at least 1− δ, both Q and P3 (from Definition 1)
hold. Consider a pair of itemsets (xi, xj) with 1 ≤ i ≤ K < j ≤ m such that

fD(xi) ≥ fD(xj) + ε. By Fact 1 we have Pr(fS(xj) > fS(xi)) ≤ e−
ε2

2
t. Also,

from Relation (2) we have that for any itemset xi, with 1 ≤ i ≤ m, Pr(|fS(xi)−

fD(xi)| ≥ ε) ≤ 2e−
ε2

2
t. Note that K(m−K) pairs are involved in Q and at most

m itemsets are involved in property P3. Therefore, by applying an union bound,

the probability that Q or P3 do not hold is at most (2m+K(m−K))e−
ε2

2
t ≤ δ,

and the theorem follows. ⊓⊔

Note that t is independent of the number of transactions in D and of the fre-
quencies of the itemsets in D.

We now show that for K,w ∈ O (1) and constant ε, if we fix the confidence
parameter δ suitably small, yet constant, then for a random sample S of size
t ∈ o(lnm) = o((1/ε2) ln(m/δ)) the probability that TOPK(S, I,K,w) is an ε-
approximation to TOPK(D, I,K,w) can be made smaller than 1−δ by choosing
the number of items and the number of transactions in D large enough. Consider
a universe I(ℓ) of K+ ℓ items, namely I(ℓ) = {y1, . . . , yK}∪{x1, . . . , xℓ}, where
K is fixed and ℓ is a parameter.

Theorem 2. Let K,w ∈ O (1) and consider an arbitrary constant ε ∈ (0, 1/4).
Fix a constant δ < 1 − (1/2)K. Let t(x) be any integer-valued function such

that t(x) ∈ o(ln x). Then, for large enough ℓ, there exists a dataset D∗ over

I(ℓ) such that for a random sample S of t(ℓ) transactions, the probability that

TOPK(S, I,K,w) is an ε-approximation to TOPK(D, I,K,w) is less than 1−δ.

Proof. Fix pK ∈ (0, 1) such that pK > 2ε and pK − p2K > ε, and let pℓ =
pK − 2ε. Consider a random dataset D of N transactions over I(ℓ), where in
any transaction each item yi (resp., xj) is included with probability pK (resp.,
pℓ) independently of all other items and all other transactions. Hence, pK is the
expected frequency of each yi, and pℓ the expected frequency of each xj . Let p̂ be
the minimum frequency in D of the items y1, . . . , yK . It can be easily shown that,
by the choice of pK , if N is large enough the event F = “TOPK(D, I,K,w) =
{y1, . . . , yK} and all other itemsets have frequency smaller than p̂ − ε” holds
with probability 1 − o(1). Thus the only itemsets that can be reported in an
ε-approximation are the items {y1, . . . , yK}. For a sample S, define the events
E1 = ”at least one of x1, . . . , xℓ appears in S with frequency ≥ pK”, and E2 =
“at least one of y1, . . . , yK appears in S with frequency ≤ pK”. When F , E1 and
E2 occur, TOPK(S, I,K,w) does not satisfy property P1.

In what follows we prove that if S is a random sample of t(ℓ) = o(ln ℓ) =
o(lnm) transactions from a dataset D built as above, then Pr(F ∩ E1 ∩ E2) ≥
1 − o(1) − (1/2)K . This implies that Pr(E1 ∩ E2|F ) ≥ 1 − o(1) − (1/2)K , and



thus there must exist a dataset D∗ for which the event F holds and such that
if S is a random sample of t(ℓ) transactions then Pr(TOPK(S, I,K,w) is an ε-
approximation to TOPK(D∗, I,K,w)) ≤ (1/2)K + o(1). Hence, this probability
can be made smaller than 1− δ by choosing N and ℓ sufficintly large.

Since we already argued that for N large enough event F occurs with proba-
bility at least 1−o(1), it is sufficient to prove that Pr(E1∩E2) ≥ 1−o(1)−(1/2)K .
We first show that if S has size t(ℓ) then Pr(E1) = 1 − o(1). Let Xi = 1 if

fS(xi) ≥ pK and Xi = 0 otherwise. Then X =

ℓ
∑

i=1

Xi is a random variable

counting how many of the items x1, . . . , xℓ appear in S with frequency at least
pK . Thus Pr(E1) = Pr(X ≥ 1). We have3

Pr(Xi = 1) ≥

(

t

tpK

)

pℓ
tpK (1− pℓ)

t−tpK ≥

(

pℓ
pK

)tpK

(1− pℓ)
t−tpK

Let d > 1 be a constant such that 1/d = min {pℓ/pK , 1− pℓ}. Then

(pℓ/pK)
tpK (1 − pℓ)

t−tpK ≥ (1/d)t. We then have Pr(X = 0) ≤
(

1− 1
dt

)ℓ
≤

e−ℓ/dt

. If t ∈ o(ln ℓ) = o(lnm), we have Pr(X = 0) = o(1), that proves
Pr(E1) = Pr(X ≥ 1) = 1− Pr(X = 0) = 1− o(1).

Now we turn our attention to the K items y1, . . . , yK . We have

Pr(E2) = 1−

K
∏

i=1

Pr(fS(yi) > pK) ≥ 1−

(

1

2

)K

where the last inequality follows from the fact that pK is the expected frequency
of yi. Thus, Pr(E1 ∩ E2) ≥ 1− o(1)− (1/2)K and the theorem follows. ⊓⊔

4 Algorithm for approximating the top-K frequent

itemsets

We now describe an efficient algorithm which discovers an ε-approximation to
TOPK(D, I,K,w) by mining progressively larger samples of the dataset D un-
til the sample size established in Theorem 1 is reached, or a certain stopping
condition is met. When the algorithm stops, it returns, as output, the set
TOPK(S∗, I,K,w) , where S∗ is the last processed sample. For j ≥ 0, define

tj =
8

ε2

(

ln
8K

δ
+ j

)

.

Let also jmax ≥ 0 be the smallest index such that

tjmax
≥ min

{

|D|, (2/ε2) ln((2m+K(m−K))/δ)
}

.

The algorithm performs a sequence of phases. Specifically, in Phase j, for
j ≥ 0 and j < jmax, the algorithm processes a random sample of tj transactions.

3 For notational convenience, we replace t(ℓ) with t in the formulas.



A different sample schedule can be used, provided that the size of the sample
processed at Phase j is at least tj , and the results we present would still hold.
In practice it may be more efficient to use a geometrical progression of sample
sizes, starting at t0 defined as above.

In Phase jmax, if tjmax
≥ |D| the algorithm processes D to extract

TOPK(D, I,K,w), otherwise it considers a random sample of tjmax
transac-

tions. The algorithm stops when j = jmax, or j < jmax and a suitable stopping
condition (specified below) holds.

Consider Phase j and let S be the random sample of size tj processed in the

phase. Define σj = K
(

e
2

)j
. For i ≥ 0, define also sj(i) = ⌊(2σj)

(i+1)2/2⌋, and

Sj(i) =
∑i

ℓ=0 sj(ℓ). For notational convenience, we assume Sj(−1) = 0 and use
h(j) as the largest index such that Sj(h(j) − 1) + 1 ≤ m. Consider an ordering

of the itemsets of U(I, w) by decreasing frequency w.r.t. S, and let f
(ℓ)
S denote

the frequency in S of the ℓ-th itemset of U(I, w) in this ordering. The stopping

condition for Phase j is

f
(K)
S − f

(Sj(i−1)+1)
S > (i+ 1)ε for 1 ≤ i ≤ h(j) . (3)

A pseudocode for the algorithm is given in Algorithm 1, where the function
StoppingConditionIsSatisfied checks whether the above stopping condition
holds. The efficient implementation of this function is discussed in Section 5.

Algorithm 1: Pseudocode of the algorithm

input : dataset D, integers K, w, reals ε, δ : 0 < ε, δ < 1.
output: A collection of ordered pairs (x, f) which is an ε-approximation to

TOPK(D, I,K,w) with probability at least 1− δ.

1 m← |U(I, w)|; bound← min
{

|D|, 2
ε2

ln (2m+K(m−K))
δ

}

2 j ← 1; jmax ← argmin
{

z : 8
ε2

(

ln 8K
δ

+ z
)

> bound
}

3 while j < jmax do

4 tj ←
8
ε2

(

ln 8K
δ

+ j
)

5 S ← random sample of size tj from D
6 if StoppingConditionIsSatisfied then return TOPK(S ,I,K, w)

j ← j + 1

7 end

8 if bound < |D| then S ← a random sample of size bound from D
9 else S ← D

10 return TOPK(S ,I, K,w)

We now show that, with probability at least 1 − δ, the set returned by the
above algorithm is an ε-approximation to TOPK(D, I,K,w). For Phase j of the
algorithm we define Bj(i), with 0 ≤ i ≤ h(j), as the set of sj(i) itemsets of
U(I, w) whose rank in the canonical ordering (w.r.t. the original dataset D) is
in the interval [Sj(i− 1) + 1, Sj(i)].



Lemma 1. The following property holds with probability at least 1−δ: for every

Phase j of the algorithm, for every 0 ≤ i ≤ h(j), and for every itemset x ∈ Bj(i):

|fS(x) − fD(x)| < (i+ 1)
ε

2
,

where S is the sample processed in Phase j.

Proof. Let us focus on an arbitrary Phase j. From Fact 1, Relation (2), we have
that for any x ∈ Bj(i)

Pr
(

|fS(x) − fD(x)| ≥ (i+ 1)
ε

2

)

≤ 2e−ε2(i+1)2tj/8 .

Hence the probability that there exists an itemset x (belonging to any Bj(i))
for which the stated bound does not hold is upper bounded by:

h(j)
∑

i=0

sj(i)2e
−ε2(i+1)2tj/8 ≤

h(j)
∑

i=0

(

2σje
−ε2tj/8

)(i+1)2

=

h(j)
∑

i=0

(

δ

2j+2

)(i+1)2

≤
δ

2j+1
.

The lemma follows by applying the union bound over all phases (i.e., j =
0, 1, . . .). ⊓⊔

The following theorem establishes the desired probabilistic guarantee on the
correctness of the algorithm.

Theorem 3. The algorithm returns an ε-approximation to TOPK(D, I,K,w)
with probability at least 1− δ.

Proof. We consider two cases, depending on when the algorithm stops. If the al-
gorithm stops at Phase j = jmax, then the output is correct since it coincides with
the set TOPK(D, I,K,w), if tjmax

≥ |D|, or, otherwise, it is an ε-approximation
to TOPK(D, I,K,w) with probability at least 1 − δ as shown by Theorem 1.
Suppose instead that the algorithm stops at an earlier phase j < jmax because
the stopping condition for Phase j is met, and let S denote the sample used in
this phase. By Lemma 1, for every 0 ≤ i ≤ h(j), and for every itemset x ∈ Bj(i),
we have |fS(x) − fD(x)| < (i + 1) ε2 . Let W = TOPK(S, I,K,w) be the set
returned by the algorithm. We now prove that W satisfies properties P1, P2,
and P3 of Definition 1.

We first show that for each (x, fS(x)) ∈ W , we have that x ∈ Bj(0). By
contradiction, assume that for some (x, fS(x)) ∈ W , x ∈ Bj(i), for some i > 0.

Hence, fD(x) ≤ f
(Sj(i−1)+1)
D and

f
(K)
S ≤ fS(x) ≤ fD(x) + (i + 1)

ε

2
≤ f

(Sj(i−1)+1)
D + (i+ 1)

ε

2
. (4)

Observe that all itemsets whose rank in the canonical ordering (w.r.t. D) is
not larger than Sj(i − 1) + 1 belong to sets Bj(ℓ) with ℓ ≤ i. By Lemma 1, for
each such itemset z, we have that

fS(z) ≥ fD(z)− (i+ 1)
ε

2
≥ f

(Sj(i−1)+1)
D − (i+ 1)

ε

2
.



Hence, since there are Sj(i − 1) + 1 of these itemsets, it follows that

f
(Sj(i−1)+1)
S ≥ f

(Sj(i−1)+1)
D − (i+ 1)

ε

2
. (5)

By combining Equations 4 and 5 we obtain that f
(K)
S −f

(Sj(i−1)+1)
S ≤ (i+1)ε,

which contradicts the stopping condition (3). Thus, all itemsets occurring in W
belong to Bj(0). This fact, together with the inequality stated in Lemma 1 for
the itemsets of Bj(0), establishes Property P3.

Now, if we consider any of the first K itemsets of U(I, w) in the canonical
ordering, say xℓ, for some 1 ≤ ℓ ≤ K, which belongs to Bj(0) by construction, we

have that fS(xℓ) ≥ fD(xℓ)−
ε
2 ≥ f

(K)
D − ε

2 . Hence, f
(K)
S ≥ f

(K)
D − ε

2 . Therefore,
for each (x, fS(x)) ∈ W we have

fD(x) ≥ fS(x)−
ε

2
≥ f

(K)
S −

ε

2
≥ f

(K)
D − ε,

which establishes Property P1. Finally, in order to establish Property P2, we

observe that W must contain a pair (z, fS(z)) such that fD(z) ≤ f
(K)
D . As argued

before, z ∈ Bj(0), hence

f
(K)
S ≤ fS(z) ≤ fD(z) +

ε

2
≤ f

(K)
D +

ε

2
. (6)

Consider an itemset y ∈ U(I, w) such that (y, fS(y)) 6∈ W . If y ∈ Bj(i) with

i > 0 then by definition of Bj(i) its real frequency is at most f
(K)
D , hence it

cannot be greater than or equal to f
(K)
D + ε. If instead y ∈ Bj(0) we have

fD(y) ≤ fS(y) +
ε

2
< f

(K)
S +

ε

2
≤ f

(K)
D + ε,

where the last inequality follows from Equation 6.) Thus, Property P2 is estab-
lished. ⊓⊔

5 Efficient implementation with count-min filter

A straightforward implementation of function StoppingConditionIsSatisfied

presented in Section 4 requires m = |U(I, w)| counters to store the observed
frequencies of all itemsets in order to evalute the stopping condition (3). We now
describe an efficient implementation which uses count-min filters, a variation of
Bloom filters, to save space. For a dataset with O(1) transaction size the use of
count-min filters reduces the space requirements from m to O(logm) counters.

A count-min filter B consists of c counters, and uses kB hash functions.
The counters are split into kB disjoint groups of size c

kB
(we assume that kB

divides c evenly). The kB hash functions map itemsets into counters, so each
hash function Hi, 1 ≤ i ≤ kB is a map from the set U(I, w) to the integers
in the range [(i − 1)c/kB, ic/kB − 1]. A more detailed description of count-min
filters and their properties can be found in [9, Section 13.4]. Given a sample



S, we use a count-min filter B to approximatethe frequencies of itemsets in S.
Initially, all counters are set to 0, then, for each transaction τ ∈ S and each
itemset x ∈ U(I, w) appearing in τ , we increment by one the kB counters Hi(x)
associated with x.

We now introduce some definitions and some results on count-min filters
which we will use later in the analysis. The count-min support of an itemset x
is the value of the minimum of the kB counters associated with x in B, and is

denoted with σB(x). The count-min frequency of x is fB(x) = σB(x)
|S| . (In the

notation for count-min support and count-min frequency we omit any reference
to S because the set of transactions on which the count-min filter is built will
be clear from the contest.) We denote the sum of the number of itemsets from

U(I, w) in the transactions of S as CS =
∑

τ∈S

w
∑

i=0

(

|τ |

i

)

.

The following theorem (proof omitted due to space constraints) shows that
we can obtain a good approximation of the frequencies of the itemsets using a
count-min filter.

Theorem 4. Given δB > 0, εB > 0, and a sample S, let εC = εB |S|
CS

and

δc = δB/m. If B is a count-min filter of parameters kB =
⌈

ln 1
δc

⌉

and c =
⌈

ln 1
δc

⌉

·
⌈

e
εC

⌉

, then Pr(∃x|fB(x) ≥ fS(x) + εB) ≤ δB.

While the count-min filter is useful in reducing the space required to ap-
proximate the frequencies of itemsets in the sample, it is not trivial to check
the stopping condition without explicitly querying the filter for the count-min
frequency of every itemset in U(I, w) (not only of those that appear in the sam-
ple), an operation that can be computationally too expensive. Our algorithm
will make use of an approximation of the distribution of the frequencies in the
sample of the itemsets, built using only the min-count frequencies that appear
in the min-count filter, without generating all the itemsets. The algorithm uses
the same parameters D, K, ε, and δ as the algorithm of Section 4.

Let δ1, δ2 > 0 such that (1 − δ1)(1 − δ2) = 1 − δ. We define tj similarly to
Section 4, using δ1 instead of δ. Let jmax, σK , sj(i), Sj(i), and h(j) be defined as
in the algorithm of Section 4. The algorithm performs a sequence of phases and
stops when j = jmax, or j < jmax and a suitable stopping condition (Equation (7)
specified below) holds.

Let S be the sample analyzed by the algorithm at phase j. At each phase
the algorithm will use a count-min filter B with parameters c, kB tuned so that
Pr(∃x|fB(x) ≥ fS(x) + εB) ≤ δ2 (see Theorem 4). Note that εB is not defined
by the user. First, the algorithm obtains TOPK(S, I,K,w). Then, we scan the
sample and populate the min-count filter B as described before. With a second
scan of the sample, the algorithm computes an approximation f̂ to the distri-
bution of frequencies of itemsets in the samples, so that for all j, if f̂ (j) is the

frequency of the j-th most frequent itemset using this approximation, f̂ (j) ≥ f
(j)
S

holds. For each itemset x ∈ U(I, w) appearing in S, let cx be the counter of B



with minimum value among those associated to x, and let, for each counter ℓ of
B, Iℓ = {x ∈ U(I, w) : cx = ℓ}. The approximation f̂ is computed as follows:
for each counter ℓ of B, another counter sℓ is created, with initial value zero.
The algorithm scans S and, for each transaction τ in S and each itemset x of
length up to w appearing in τ , the algorithm increases scx by one. Once the scan

is terminated, the value of sℓ will be vℓ =
∑

x∈Iℓ

σS(x). Since we built B so that,

with probability at least 1− δ2, for each x ∈ Iℓ we have σS(x) ≥ σB(x)− εB|S|

then, if Theorem 4 holds, the value rℓ =
⌊

vℓ
σB(x)−εB |S|

⌋

is an upper bound to |Iℓ|.

For each counter ℓ of B let x be an itemset in Iℓ, then we define fℓ =
σB(x)
|S| . To

obtain an ordering for the approximate frequencies of all itemsets in U(I, w), we
need to sort only the p frequencies of the p counters in B, since in our approxi-
mation there will be rℓ itemsets with frequency fℓ. Let f̂ (i) be the frequency at
the i-th position in this order, for 1 ≤ i ≤ m. By definition of f̂ (i) and Iℓ, we

have that f̂ (i) ≥ f
(i)
S . The stopping condition for phase j is then

f
(K)
S − f̂ (Sj(i−1)+1) > (i + 1)ε for 1 ≤ i ≤ h(j) . (7)

Note that the choice of εB influences the stopping condition, since the accu-
racy of f̂ depends on εB. When the algorithm stops, it returns the set of top-K
frequent itemsets and their respective frequencies with respect to the last pro-
cessed sample. The following theorem (proof omitted due to space constraints)
easily follows from the considerations above.

Theorem 5. The output of the min-count filter based algorithm is an ε-
approximation to TOPK(D, I,K,w) with probability at least 1− δ.

6 Evaluation

In this section, we provide evidence of the effectiveness of our results. Specifically,
in Subsection 6.1 we evaluate experimentally the quality of the approximation
of the top-K frequent itemsets obtained by mining small samples with the sizes
derived in the previous sections. In Subsection 6.2 we provide both analytical
and experimental evidence that the stopping condition used by the algorithm
presented in Section 4 is effective for certain datasets.

6.1 Evaluation of the quality of the output

We first conduct an analysis of the “quality” of the output set obtained either
by mining a sample of a dataset with a size set by the bound presented in
Theorem 1, or by running the algorithm of Section 4. We used the real datasets
kosarak and webdocs, and the artificial dataset T10I4D100K from the FIMI
repository 4 whose main characteristics are synthetized in Figure 1.

Each of these datasets has a different distribution of the frequencies of the
items. We used several values for K (1; 2; 5; 10; 100; 1000) and the values 1, 2,

4 http://fimi.cs.helsinki.fi/data/.



Dataset #Items Avg. Trans. Length # Transactions

T10I4D100K 1,000 10.1 100,000

kosarak 41,270 8.1 990,002

webdocs 5,267,656 177 1,692,082

Fig. 1. Datasets characteristics

and 3 for w. In all of our experiments, δ was fixed to 0.1 and ε to 0.02. For
each combination (dataset, K, w), we mined TOPK(S, I, k, w) from 100 random
samples S of size derived from Theorem 1, and applied 100 times the algorithm
of Section 4. (We did not run the algorithm for webdocs with w = 2, 3 due to the
inefficiency of the current implementation of the algorithm which does not use
the count-min filter.) In all cases we considered, the size suggested by theoretical
bound was considerably smaller than the size of the dataset. In particular, for
kosarak the bound suggested a sample size approximately 20% of the size of the
dataset, while for webdocs it was between 5% and 10%, and for T10I4D100K

around 40%, because this last dataset has a smaller number of transactions.
In all of the runs, for any tested combination of parameters, the output

was an ε-approximation to TOPK(D, I,K,w). This should be compared to the
(1 − δ) = 0.9 probability of obtaining a ε-approximation guaranteed by the
theorethical results. Also, in all cases the output included at least 95% of the
actual top-K frequent itemsets. (Note that the definition of ε-approximation
gives no guarantee on the fraction of actual top-K frequent itemsets returned.)
In fact, we observed that the actual top-K frequent itemsets discovered from
the sample were usually many more than those with actual frequency greater
than f (K) + ε, which are guaranteed to be included in the output by definition
of ε-approximation. Most of the time (85% of the runs), the output contained
exactly all of the actual top-K frequent itemsets. For w = 2, 3 frequent itemsets
of size greater than one were also correctly identified by mining the sample. In
particular, for kosarak and w = 2, we always correctly identified all the frequent
itemsets of size 2 at k = 5 (3 such itemsets), k = 10 (5 itemsets), and k = 100
(65 itemsets). For k = 1000 we always identify at least 750 such itemsets of size
2, out of 765. For w = 3 we were always able to identify all itemsets of length 2 (4
itemsets) and length 3 (1 itemset) when k = 10. For T10I4D100K, no frequent
itemsets of size greater than 1 existed for the tested values of k. Finally, as far
as the reported frequency is concerned, in all of the runs and for every itemset,
the error between the reported frequency in the output and the real frequency of
the itemset was much smaller than ε, usually between ε/10 and ε/5. The higher
accuracy of the observed output with respect to what promised by the theoretical
analysis is explained by the fact that the latter relies on several approximations
which weaken the bounds.

6.2 Effectiveness of the stopping condition

Below, we provide both analytical and experimental evidence that the stopping
condition used by the algorithm presented in Section 4 is effective in the sense



that, for certain datasets, the algorithm stops after mining a sample of size
smaller than the upper bound of Theorem 1.

Analytical evidence. Consider using the algorithm presented in Section 4 for
mining of an ε-approximation to TOPK(D, I,K,w) for a dataset D over a set
I of n items with confidence at least 1 − δ. Recall that the algorithm probes
increasing sample sizes tj , with j ≥ 0, until the stopping condition is met or
j = jmax, where the last sample size tjmax

is the minimum between the dataset

size and the upper bound given in Theorem 1. For convenience, fix K =
∑w

i=1

(

ℓ
i

)

for some integer ℓ > w, and choose the parameters n, ε and w in such a way to
guarantee that n > ℓ, jmax > 0, and pK = (h(j) + 1)ε+ (ε/2) + (1/tj) < 1, for
some j with 0 ≤ j < jmax. It can be easily shown that meaningful configurations
of the parameters for which these conditions are satisfied exist (more details will
be provided in the full paper). Fix one such value j.

Let I = {x1, x2, . . . , xn} and define τ0 = {x1, x2, . . . , xℓ}, and τi = {xi}, for
ℓ < i ≤ n. Consider a dataset D consisting of N copies of τ0 and one copy of
τi = {xi} for each ℓ < i ≤ n. Thus D contains a total of N + n− ℓ transactions.
We allow N to grow arbitrarily large and assume it is large enough to make
N + n− ℓ > tj and to make the frequency of each of the K itemsets included in
τ0 greater than pK . We have:

Theorem 6. For a dataset D built as described above, the algorithm will stop

at round j with probability at least 1− δ − o(1).

Proof. Suppose we are at round j of the algorithm and that Lemma 1 holds,
which happens with probability at least 1 − δ. Moreover, assume there is no
itemset from the m−K not appearing in transaction t0 that has a frequency in
the sample greater than 1

tj
. The probability of this second event is 1− o(1) if N

is large enough.
From Lemma 1, we have that for any itemset x ∈ Bj(i), 0 ≤ i ≤ h(j):

fS(X) > fD(X)− (i + 1)
ε

2
> fD(x)− (h(j) + 1)

ε

2
.

Then, the K itemsets in transaction t0 have frequency in the sample greater
than (h(j) + 1) ε2 + ε

2 + 1
tj

> 1
tj

and are thus the top-K frequent itemsets in the

sample. This means they belong to Bj(0), and then f
(K)
S > pK − ε

2 . Hence we

have f
(K)
S − f

(i)
S > (h(j) + 1)ε, ∀i,K < i ≤ m, and the theorem follows. ⊓⊔

Experimental evidence. The ability of the stopping condition of halting the sam-
pling schedule before the sample size established by Theorem 1 is reached was
also observed when running the algorithm from Section 4 on kosarak with the
same configurations of parameters K,w, ε and δ described in the previous sub-
section. For this dataset, when w = 1 the algorithm always terminated when
the sample size was equal to the theoretical bound, while for w = 2, 3 it some-
times stopped earlier. Fig. 2(a) and Fig. 2(b) show a comparison between the
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(b) w = 3

Fig. 2. Experimental evaluation of the effectiveness of the stopping condition for
kosarak. The dotted line represents the theoretical bound from Theorem 1, the solid
line the size at which the algorithm stopped.

theoretical bound and the sample size at which the algorithm terminated in
our experiments because the stopping condition was satisfied, as function of K.
We observe that the gap between the stopping sample size and the theoretical
bound increases with w, which suggests that the stopping condition employed by
our algorithm becomes more effective when the number of potential candidate
itemsets (i.e., the size of the set U(I, w)) increases.

7 Conclusions

We studied the extraction of the top-K frequent itemsets of bounded size from
random samples of a dataset of transactions. We defined a reasonable approxi-
mation of the task and explored the tradeoff between the size of the sample and
the accuracy of the approximation. In particular, we proved a bound on the sam-
ple size sufficient to achieve a given accuracy of the approximation with a given
confidence, and we showed that, under certain constraints on the parameters,
the bound is tight within constant factors. To the best of our knowledge, this is



the first tight relation between sample size and accuracy of the approximation
for mining top-K frequent itemsets. We also proposed a progressive sampling
algorithm that, in some cases, is able to ensure similar accuracy and confidence
while mining smaller samples. For this algorithm, whose efficient implementation
is challenging, we proposed an optimization based on count-min filters, a varia-
tion of Bloom filters. The effectiveness of our results has been assessed on both
artificial and real benchmark datasets. Future research could aim at obtaining
tight upper and lower bounds on the sample size required to ensure given accu-
racy and confidence in all cases, at characterizing the datasets and parameter
configurations for which the progressive sampling algorithm becomes profitable,
and at engineering an efficient implementation of this algorithm based on the
count-min filter.
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