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Abstract

Next-generation DNA sequencing technologies are enabling genome-wide measurements of somatic
mutations in large numbers of cancer patients. A major challenge in interpretation of this data is to distin-
guish functional driver mutations important for cancer development from random passenger mutations.
A common approach for identifying driver mutations is to find genes that are mutated at significant fre-
quency in a large cohort of cancer genomes. This approach is confounded by the observation that driver
mutations target multiple cellular signaling and regulatory pathways. Thus, each cancer patient may
exhibit a different combination of mutations that are sufficient to perturb these pathways. This muta-
tional heterogeneity presents a problem for predicting driver mutations solely from their frequency of
occurrence. We introduce two combinatorial properties, coverage and exclusivity, that distinguish driver
pathways, or groups of genes containing driver mutations, from groups of genes with passenger muta-
tions. We derive two algorithms, called Dendrix, to find driver pathways de novo from somatic mutation
data. We apply Dendrix to analyze somatic mutation data from 623 genes in 188 lung adenocarcinoma
patients, 601 genes in 84 glioblastoma patients, and 238 known mutations in 1000 patients with vari-
ous cancers. In all datasets, we find groups of genes that are mutated in large subsets of patients and
whose mutations are approximately exclusive. Our Dendrix algorithms scale to whole-genome analysis
of thousands of patients and thus will prove useful for larger datasets to come from The Cancer Genome
Atlas (TCGA) and other large-scale cancer genome sequencing projects.
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1 Introduction
Cancer is driven by somatic mutations in the genome that are acquired during the lifetime of an individual.
These include single nucleotide mutations and larger copy number aberrations and structural aberrations.
With the availability of next-generation DNA sequencing technologies, whole-genome or whole-exome
measurements of the somatic mutations in large numbers of cancer genomes is now a reality (Meyerson
et al., 2010; International cancer genome consortium, 2010; Mardis and Wilson, 2009). A major challenge
for these studies is to distinguish the functional driver mutations responsible for cancer from the random
passenger mutations that have accumulated in somatic cells but that are not important for cancer devel-
opment. A standard approach to predict driver mutations is to identify recurrent mutations (or recurrently
mutated genes) in a large cohort of cancer patients. This approach has identified a number of important
cancer mutations (e.g. in KRAS, BRAF, ERRB2, etc.), but has not revealed all of the driver mutations in
individual cancers. Rather, the results from initial studies (Jones et al., 2008; Ding et al., 2008; The Cancer
Genome Atlas Research Network, 2008) have confirmed that cancer genomes exhibit extensive mutational
heterogeneity with no two genomes – even those from the same tumor type – containing exactly the same
complement of somatic mutations. This heterogeneity results not only from the presence of passenger mu-
tations in each cancer genome, but also because driver mutations typically target genes in cellular signaling
and regulatory pathways (Hahn and Weinberg, 2002; Vogelstein and Kinzler, 2004). Since each of these
pathways contains multiple genes, there are numerous combinations of driver mutations that can perturb a
pathway important for cancer. This mutational heterogeneity complicates efforts to identify functional muta-
tions by their recurrence across many samples, as the number of patients required to demonstrate recurrence
of rare mutations is very large.

An alternative approach to testing the recurrence of individual mutations or genes is to examine muta-
tions in the context of cellular signaling and regulatory pathways. Most recent cancer genome sequencing
papers analyze known pathways for enrichment of somatic mutations (Jones et al., 2008; Ding et al., 2008;
The Cancer Genome Atlas Research Network, 2008), and methods that identify known pathways that are
significantly mutated across many patients have been developed (e.g. Efroni et al. (2011); Boca et al. (2010)).
Also, algorithms that extend pathway analysis to genome-scale gene interaction networks have recently been
introduced (Cerami et al., 2010; Vandin et al., 2010). Pathway or network analysis of cancer mutations relies
on prior identification of the groups of genes in the pathways. While some pathways are well-characterized
and cataloged in various databases (Jensen et al., 2009; Keshava Prasad et al., 2009; Kanehisa and Goto,
2000), knowledge of pathways remains incomplete. In particular, many pathway databases contain a super-
position of all components of a pathway and information regarding which of these components are active
in particular cell-types is largely unavailable. These concerns, plus the availability of increasing number of
sequenced cancer genomes motivate the question of whether it is possible to automatically discover groups
of genes with driver mutations, or mutated driver pathways, directly from somatic mutation data collected
from large numbers of patients.

De novo discovery of mutated driver pathways seems implausible because of the enormous number of
possible gene sets to test: e.g. there are more than 1026 sets of 7 human genes. However, the current
understanding of the somatic mutational process of cancer (McCormick, 1999; Vogelstein and Kinzler,
2004) places two additional constraints on the expected patterns of somatic mutations that significantly
reduce the number of gene sets to consider. First, an important cancer pathway should be perturbed in a
large number of patients. Thus, given genome-wide measurements of somatic mutations, we expect that
most patients will have a mutation in some gene in the pathway. Second, a driver mutation in a single gene
of the pathway is often assumed to be sufficient to perturb the pathway. Combined with the fact that driver
mutations are relatively rare, most patients exhibit only a single driver mutation in a pathway. Thus, we
expect that the genes in a pathway exhibit a pattern of mutually exclusive driver mutations, where driver
mutations are observed in exactly one gene in the pathway in each patient (Vogelstein and Kinzler, 2004;
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Yeang et al., 2008). There are numerous examples of pairs of mutually exclusive driver mutations including:
EGFR and KRAS mutations in lung cancer (Gazdar et al., 2004), TP53 and MDM2 mutations in glioblastoma
(The Cancer Genome Atlas Research Network, 2008) and other tumor types, and RAS and PTEN mutations
in endometrial (Ikeda et al., 2000) and skin cancers (Mao et al., 2004). Mutations in the four genes, EGFR,
KRAS, HER2, and BRAF, from the EGFR-RAS-RAF signaling pathway were found to be mutually exclusive
in lung cancer (Yamamoto et al., 2008). More recently, statistical analysis of sequenced genes in large sets
of cancer samples (Ding et al., 2008; Yeang et al., 2008) identified several pairs of genes with mutually
exclusive mutations.

We introduce two algorithms to find sets of genes with the following properties: (i) high coverage:
most patients have at least one mutation in the set; (ii) high exclusivity: nearly all patients have no more
than one mutation in the set. We define a measure on sets of genes that quantifies the extent to which a
set exhibits both criteria. We show that finding sets of genes that optimize this measure is in general a
computationally challenging problem. We introduce a straightforward greedy algorithm and prove that this
algorithm produces an optimal solution with high probability when given a sufficiently large number of
patients and subject to some statistical assumptions on the distribution of the mutations (Section 2.1). Since
these statistical assumptions are too restrictive for some data (e.g. they are not satisfied by copy number
aberrations) and since the number of patients in currently available datasets is lower than required by our
theoretical analysis, we introduce another algorithm that does not depend on these assumptions. We use
a Markov Chain Monte Carlo (MCMC) approach to sample from sets of genes according to a distribution
that gives significantly higher probability to sets of genes with high coverage and exclusivity. Markov
Chain Monte Carlo is a well established technique to sample from combinatorial spaces with applications
in various fields (Randall, 2006; Gilks, 1998). For example, MCMC has been used to sample from spaces
of RNA secondary structures (Meyer and Miklos, 2007), haplotypes (Bansal et al., 2008), and phylogenetic
trees (Yang and Rannala, 1997). In general, the computation time (number of iterations) required for an
MCMC approach is unknown, but in our case, we prove that our MCMC algorithm converges rapidly to the
stationary distribution.

We emphasize that the assumptions that driver pathways exhibit both high coverage and high exclusivity
need not be strictly satisfied for our algorithms to find interesting sets of genes. Indeed, mutual exclusivity
is a fairly strong assumption, and there are examples of co-occurring, and possibly cooperative, mutations
such as VHL/SETD2/PBRM1 mutations in renal cancer (Varela et al., 2011), and CBF translocations and
kinase mutations in acute myeloid leukemias (Deguchi and Gilliland, 2002). Yeang et al. (2008) suggest a
model where mutations in genes from the same pathway were typically mutually exclusive and mutations
in genes from different pathways were sometimes co-occurring. It is also possible that mutations in some
genes of an essential pathway are insufficient to perturb the pathway on their own and that other co-occurring
mutations are necessary. In this case, there remains a large subset of genes in the pathway whose mutations
are exclusive, e.g. a subset obtained by removing one gene from each co-occurring pair. The identification
of these subsets of genes can be used as a starting point to later identify the other genes with co-occurring
mutations.

We apply our algorithms, called De novo Driver Exclusivity (Dendrix), to analyze sequencing data
from three cancer studies: 623 sequenced genes in 188 lung adenocarcinoma patients, 601 sequenced genes
in 84 glioblastoma patients, and 238 sequenced mutations in 1000 patients with various cancers. In all
three datasets we find sets of genes that are mutated in large numbers of patients and are mostly exclusive.
These sets include genes in the Rb, p53, mTOR, and MAPK signaling pathways, all pathways known to
be important in cancer. In glioblastoma, the set of three genes that we identify is associated with shorter
survival (Backlund et al., 2003). We also show that the MCMC algorithm efficiently samples multiple sets
of six genes in simulated mutation data with thousands of genes and patients. Both the greedy and MCMC
algorithms scale to whole-genome analysis of thousands of patients and thus will prove useful for analysis
of larger datasets to come from The Cancer Genome Atlas (TCGA) and other large-scale cancer genome
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sequencing projects.

2 Results
Consider mutation data for m cancer patients, where each of n genes is tested for a somatic mutation (e.g.,
single nucleotide mutation or copy number aberration) in each patient. We represent the mutation data by a
mutation matrix A with m rows and n columns, where each row is a patient, and each column is a gene. The
entry Aij in row i and column j is equal to 1 if gene j is mutated in patient i, and it is 0 otherwise (Figure 1).
For a gene g, let Γ(g) = {i : Aig = 1} denote the set of patients in which g is mutated. Similarly, for a
set M of genes, let Γ(M) denote the set of patients in which at least one of the genes in M is mutated:
Γ(M) = ∪g∈MΓ(g). We say that a set M of genes is mutually exclusive if no patient contains more than
one mutated gene in M , i.e. Γ(g)∩Γ(g�) = ∅ for all g, g� ∈ M . Analogously, we say that an m×k submatrix
M consisting of k columns of a mutation matrix A is mutually exclusive if each row of M contains at most
one 1. Note that the above definitions also apply when the columns of the mutation matrix A correspond to
parts of genes (e.g. protein domains or individual residues). In the results below, we will analyze data using
both definitions of the mutation matrix.

Earlier studies (Ding et al., 2008; Yeang et al., 2008) employed straightforward statistical tests to test
for exclusivity between pairs of genes. More sophisticated tests for pairwise exclusivity have also been
proposed (Bradley and Farnsworth, 2009). However, it is not clear how to extend such pairwise tests to
larger groups of genes, particularly because the number of hypotheses grows rapidly as the number of genes
in the set increases. Moreover, identification of pairs of mutually exclusive mutated genes is not sufficient
for identification of larger sets (as suggested in Yeang et al. (2008)), since mutual exclusion relations are
not transitive. For example, consider two patients s1 and s2: in s1, only gene x is mutated; in s2, genes y, z
are mutated. The pairs of genes (x, y) and (x, z) are mutually exclusive, but the pair (y, z) is not. In fact,
finding the largest set of genes with mutually exclusive mutations is NP-hard by reduction from maximum
independent set (Garey and Johnson, 1990).

Instead, we propose to identify sets of genes (columns of the mutation matrix) that are mutated in a large
number of patients and whose mutations are mutually exclusive. We define the following problem.

Maximum Coverage Exclusive Submatrix Problem: Given an m × n mutation matrix A and an integer
k > 0, find a mutually exclusive m× k submatrix M of k columns (genes) of A with the largest number of
non-zero rows (patients).

We show that this problem is computationally difficult to solve (for proof, see Supplemental Material).
Moreover, this problem is too restrictive for analysis of real somatic mutation data. We do not expect
mutations in driver pathways to be mutually exclusive because of measurement errors and the presence of
passenger mutations. Instead we expect to find a set of genes that are mutated in large number of patients
and whose mutations exhibit “approximate exclusivity”, meaning that a small number of patients have a
mutation in more than one gene in the set. Thus, we aim to find a set M of genes that satisfies the following
two requirements: 1. Coverage: most patients have at least one mutation in M ; 2. Approximate exclusivity:
most patients have no more than one mutation in M .

There is an obvious trade-off between requiring mutual exclusivity in the set and obtaining low coverage
versus allowing greater non-exclusivity in the set and obtaining larger coverage. We introduce a measure on
a set of genes that quantifies the tradeoff between coverage and exclusivity. For a set M of genes, we define
the coverage overlap ω(M) =

�
g∈M |Γ(g)| − |Γ(M)|. Note that ω(M) ≥ 0 with equality holding when

the mutations in M are mutually exclusive. To take into account both the coverage Γ(M) and the coverage
overlap ω(M) of M we define the weight W (M) = |Γ(M)|−ω(M) = 2|Γ(M)|−

�
g∈M |Γ(g)|. Note that

the weight function W (M) is only one possible measure of the trade-off between coverage and exclusivity
(see Methods).

The problem that we want to solve is the following:
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Maximum Weight Submatrix Problem: Given an m × n mutation matrix A and an integer k > 0, find
the m× k column submatrix M̂ of A that maximizes W (M).

Even for small values of k (e.g. k = 6) finding the maximum weight submatrix by examining all the
possible sets of genes of size k is computationally infeasible: for example, there are ≈ 1023 subsets of
size k = 6 of 20000 genes. We show that the Maximum Weight Submatrix Problem is also computationally
difficult to solve (for proof, see Supplemental Material) and thus it is likely that there is no efficient algorithm
to solve this problem exactly. The problem of extracting subsets of genes with particular properties has also
been studied in the context of gene expression data. For example, biclustering techniques are commonly
used to identify subsets of genes with similar expression in subsets of patients (Cheng and Church, 2000;
Getz et al., 2000; Madeira and Oliveira, 2004; Murali and Kasif, 2003; Segal et al., 2003; Tanay et al.,
2002). Other variations, such as finding subsets of genes that preserve order of expression (Ben-Dor et al.,
2003) or that cover many patients (Ulitsky et al., 2008; Kim et al., 2010) have been proposed. However,
these approaches are not directly applicable to our problem as we seek a set of genes with few co-occurring
mutations, while gene expression studies aim to find groups of genes with correlated expression.

We describe our approach considering mutation data at the level of individual genes. However, by
adding columns to the mutation matrix, it is possible to apply our method at the subgene level by considering
mutations in particular protein domains, structural motifs, or individual residues. (See Section 2.4.1 for an
example.)

2.1 A Greedy Algorithm for Independent Genes
A straightforward greedy algorithm for the Maximum Weight Submatrix Problem is to start with the best
pair M � of genes and then to iteratively build the set M of genes by adding the best gene (i.e., the one that
maximize W (M)) until M has k genes (see Methods for the pseudocode of the algorithm). This algorithm is
very efficient, but in general there is no guarantee that the set M̂ that maximizes W (M) would be identified.
However, we show that the greedy algorithm correctly identifies M̂ with high probability when the mutation
data come from a generative model, that we call Gene Independence Model (for proof, see Supplemental
Material). In the Gene Independence Model: (1) each gene g /∈ M̂ is mutated in each patient with probability
pg, independently of all other events, with pg ∈ [pL, pU ] for all g. (2) W (M̂) ≈ m. (3) each of the genes
in M̂ is important, so there is no single subset of M̂ that has a dominant contribution to the weight of M̂ .
Condition (1) models the independence of mutations for genes that are not in the mutated pathway, and is a
standard assumption for somatic single nucleotide mutations (Ding et al., 2008). Condition (2) ensures that
the mutations in M̂ cover a large number of patients and are mostly exclusive. For a formal definition of
Gene Independence Model, see Supplemental Material.

Note that in the Gene Independence Model it is possible for the genes in M̂ to have observed mutation
frequencies that are identical to those of genes not in M̂ , and thus it is impossible to distinguish the genes
in M̂ from the genes not in M̂ using only the frequency of mutations, for any number of patients.

To assess the implications of this for the utility of the greedy algorithm on real data consider the follow-
ing setting: observed gene mutation frequencies are in the range [3×10−5, 0.13] (derived from a background
mutation rate of the order of 10−6 (Ding et al., 2008; The Cancer Genome Atlas Research Network, 2008)
and the distribution of human gene lengths). If somatic mutations are measured in n = 20000 human genes
and k = |M̂ | = 10, then approximately m = 2400 patients are required for the greedy algorithm to identify
M̂ with probability at least 1− 10−4. Even if somatic mutations are measured in only a subset of genes (in-
cluding all the genes in M̂ ) the bound above does not decrease much. For example, assuming n = 600 genes
are measured (as it is for recent studies (Ding et al., 2008; The Cancer Genome Atlas Research Network,
2008)), including all the k = 10 genes in |M̂ |, approximately m = 1800 patients are required to identify
M̂ with probability at least 1 − 10−4 using the greedy algorithm. This number of patients is not far from
the range that will be soon be available from large-scale cancer sequencing projects (International cancer
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genome consortium, 2010), but is larger than what is available now. Moreover, we only have shown that the
simple greedy algorithm gives a good solution when the mutation data comes from the Gene Independence
Model. This model is reasonable for some types of somatic mutations (e.g. single nucleotide mutations) but
not others (e.g. copy number aberrations).

2.2 Markov Chain Monte Carlo (MCMC) Approach
To circumvent the limitations of the greedy algorithm described above, we developed a Monte Carlo Markov
Chain (MCMC) approach that does not require any assumptions about the distribution of the mutation data or
about the number of patients. The MCMC approach samples sets of genes, with the probability of sampling
a set M proportional to the weight W (M) of the set. Thus, the frequencies that gene sets are sampled
in the MCMC method provides a ranking of gene sets, where the sets are ordered by decreasing sampling
frequency. Thus, in addition to the highest weight set, one may also examine other sets of high weight
(“suboptimal” sets) that are nevertheless biologically significant. Moreover, since the MCMC approach does
not require any assumptions about independence of mutations in different genes, it is useful for analysis
of copy number aberrations (CNAs) which amplify or delete multiple adjacent genes and thus introduce
correlated mutations. Both of these advantages will prove useful in analysis of real mutation data below.

The basic idea of the MCMC is to build a Markov chain whose states are the collections of k columns
of the mutation matrix A and to define transitions between the states that differ by one gene. We use
a Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) to sample sets M ⊆ G of k

genes with a stationary distribution that is proportional to ecW (M) for some constant c > 0. At time t,
the Markov chain in state Mt chooses a gene w in G and a gene v inside Mt, and moves to the new state
Mt+1 = Mt \ {v} ∪ {w} with a certain probability. In general there are no guarantees on the rate of
convergence of the Metropolis-Hasting algorithm to the stationary distribution. However, we prove that in
our case the MCMC is rapidly mixing (Section 4.3), and thus the stationary distribution is reached in a
practical number of steps by our method. The MCMC algorithm is described in more detail in Methods.

2.3 Results on simulated mutation data
We first tested the ability of the MCMC algorithm to detect the set M∗ of maximum weight W (M∗),
for different values of W (M∗). We simulated mutation data starting with a set M of 6 genes. For each
patient, we mutate a gene (chosen uniformly at random) in M with probability p1, and if a gene in M is
mutated, then with probability p2 we mutate another gene in M . Thus, p1 regulates the coverage of M ,
and p2 regulates the exclusivity of M . The genes not in M are mutated using a random model based on
the observed characteristics of the glioblastoma data (described below). In particular, we simulated both
single nucleotide mutations and copy number aberrations (CNAs). For the single nucleotide mutations,
genes were mutated in each patient according to the observed frequency of single nucleotide mutations in
the glioblastoma data, independently of other genes.1 We simulated CNAs by permuting the locations of
the observed CNAs on the genome while maintaining their lengths. The procedure accounts for the fact
that genes that are physically close on the genome might be mutated together in the same CNA, resulting in
correlated mutations.

We ran the MCMC algorithm on sets of 6 genes for 107 iterations sampling every 104 iterations. Figure 2
reports the ratio between frequency π(M) at which M is sampled and the maximum frequency π(maxother)
of any other sampled set. Note that the same value of W (M) is obtained with multiple different settings
of the parameters p1 and p2. For example, with p1 = 0.81 and p2 = 0.04, the set M has W (M) = 67 (in
expectation), and is sampled with frequency 3-fold greater than any other set.

The sampling ratio increases dramatically with the weight W (M) of the set.
To test the ability to identify multiple high weight sets of genes, we simulated mutation data starting

1For each gene, we used the observed frequency of mutation rather than a fixed background mutation rate to account for the
differences in gene mutation frequencies observed in the real data.
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with two disjoint sets, M1 and M2, each containing 6 genes. For each patient, we mutate genes in M1

and M2 using the probabilities p1 and p2 as described above. The sets M1 and M2 correspond to two
pathways with approximate exclusivity. The genes not in M1 or M2 were mutated using the random model
described above. Table 1 shows the frequencies with which various sets are sampled in the MCMC. M1

and M2 are sampled with highest frequency. Moreover the ratio of their frequencies is very close to the
ratio of their probabilities in the stationary distribution of the MCMC. If the MCMC is sampling from the
stationary distribution for the two sets M and M � the ratio π̃(M)

π̃(M �) should be close to ec(W (M)−W (M �)). In

our simulations, π̃(M2)
π̃(M1)

∼ 0.351, and ec(W (M2)−W (M1)) ∼ 0.368.
Finally, we tested the scalability of our method to datasets containing a larger number of genes and

varying numbers of patients. We simulated mutation data as described above on 20000 genes and 1000
patients. The results in this case are very close to the ones presented above. In particular, M1 and M2 were
the two sets sampled with highest frequency, and the frequency of each was larger than 30%. Sets other than
M1 and M2 were sampled with frequencies less than 1%. We were still able to identify the sets M1 and M2

when the number of patients was reduced to 150. M1 and M2 were sampled with frequency 13%, much
higher than the any other set. Based on these results, we anticipate that our algorithms would be useful on
whole-exome sequencing studies with a modest number of patients.

2.4 Results on cancer mutation data
We applied our MCMC algorithm to somatic mutations from high-throughput genotyping of 238 oncogenes
in 1000 patients of 17 cancer types (Thomas et al., 2007), and to somatic mutations identified in recent
cancer sequencing studies from lung adenocarcinoma (Ding et al., 2008) and glioblastoma multiforme (The
Cancer Genome Atlas Research Network, 2008). In the glioblastoma multiforme analysis, we include both
copy number aberrations and single nucleotide (or small indel) mutations, while in the lung adenocarcinoma
analysis, we consider only single nucleotide (or small indel) mutations. The MCMC algorithm samples sets
with frequency proportional to their weights, and so to restrict attention to sets with high weight we report
sets whose frequency is at least 1%. We also reduce the size of the mutation matrix by combining genes that
are mutated in exactly the same patients into larger “metagenes”.

2.4.1 Known Mutations in Multiple Cancer Types
We applied the MCMC algorithm to mutation data from Thomas et al. (2007) who tested 238 known mu-
tations in 17 oncogenes in 1000 patients of 17 different cancer types. 298 of patients were found to have
at least one of theses mutations and a total of 324 individual mutations were identified. To perform our
analysis, we built a mutation matrix with 298 patients and 18 mutation groups. These mutation groups were
defined by Thomas et al. (2007), and grouped together mutations that occurred in the same gene, in the
same functional domain of the encoded protein (e.g., kinase domain mutations or helical domain mutations
of PIK3CA), or when a distinct phenotype was correlated with a specific mutation (e.g., the T790M mutation
of EGFR known to be correlated with resistance to EGFR inhibitors). We ran the MCMC algorithm on sets
of size k, for 2 ≤ k ≤ 10. In each case we ran the MCMC for 107 iterations, and sampled a set every
104 iterations. All sets sampled with frequency at least 1% in this and all later experiments are reported in
Supplement D.

We perform a permutation test to assess the significant of the results: the statistic is the weight W (M) of
the set and the null distribution was obtained by independently permuting the mutations for each mutation
group among the patients, thus preserving the mutation frequency for each mutation group. We use the
observed frequency of mutation rather than a fixed backgound mutation rate because we want to assess the
significance of coverage and exclusivity of a set of mutation groups given the frequency of mutation of the
single mutation groups in the set.2 We identify a set of of 8 mutation groups (BRAF 600-601, EGFR ECD,

2Using the background mutation rate, some mutation groups would be reported as significantly mutated when considered in
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EGFR KD, HRAS, KRAS, NRAS,PIK3CA HD, PIK3CA KD)3 that is altered in 280/298 of the patients
(94%) with at least one mutation and has a total of 295 mutations (p < 0.01). The mutated genes are part
of well known cancer pathways (Figure 3). There are many sets of size k = 10 that contain the set of size
k = 8 above and also have high weight (see Supplemental Material). In particular, there are two sets of size
k = 10 that are altered in 287/295 (95%) of the patients, and have a total of 302 mutations (p < 0.01).
These two sets include the above 8 mutation groups and (JAK2, KIT) and (FGFR1, KIT), respectively. We
tested each pair of genes for mutual exclusivity with the (one-tailed) Fisher’s exact test. No pair of genes
show significant mutual exclusivity, with minimum q-value 0.492. Thus, a standard standard test does not
report any of the mutation groups identified by our method.

2.4.2 Lung adenocarcinoma
We next analyzed a collection of 1013 somatic mutations identified in 623 sequenced genes from 188 lung
adenocarcinoma patients from the Tumor Sequencing Project (Ding et al., 2008). In total, 356 genes were
reported mutated in at least one patient. We ran the MCMC algorithm for sets of size 2 ≤ k ≤ 10 . When
k = 2, the pair (EGFR, KRAS) is sampled 99% of the time. This pair is mutated in 90 patients with a
coverage overlap ω(M) = 0 indicating mutual exclusivity. When k = 3, the triplet (EGFR, KRAS, STK11)
is sampled with frequency 8.4%. For k ≥ 4, no set is sampled with frequency greater than 0.1%. The pairs
(EGFR, KRAS) and (EGFR, STK11) are the most significant pairs in the mutual exclusivity test performed
in (Ding et al., 2008), and thus it is not surprising that we also identify them. However, the pair (KRAS,
STK11) is not reported as significant using their statistical test. Thus, the coverage and mutual exclusivity
of the triplet (EGFR, KRAS, STK11) is a novel discovery.

We performed a permutation test as described in Section 2.4.1 to compare the significance of (EGFR,
KRAS) and (EGFR, KRAS, STK11). The p-values obtained are 0.018 and 0.005, respectively. Thus, the
triplet (EGFR, KRAS, STK11) is at least significant as the pair (EGFR, KRAS). The three genes EGFR,
KRAS and STK11 are all involved in the regulation of mTOR (Fig. 4), whose dysregulation has been re-
ported as important in lung adenocarcinoma (Ding et al., 2008). In particular, STK11 downregulates the
mTOR pathway, and mTOR activation has been reported as significantly more frequent in tumors with gene
alterations in either EGFR or KRAS (Conde et al., 2006). This supports the hypothesis that all three genes
are upstream regulators of mTOR, explaining their observed exclusivity of mutations.

To identify additional gene sets, we removed the genes EGFR, KRAS, STK11 and ran the MCMC algo-
rithm again on the remaining genes. We sample the pair (ATM, TP53) with frequency 56%, and compute
that the weight of the pair is significant (p < 0.01). ATM and TP53 are known to directly interact (Khanna
et al., 1998) and both genes are involved in the cell cycle checkpoint control (Chehab et al., 2000). More-
over this genes have no known role in mTOR regulation (Fig. 4) consistent with the observation that their
mutations are not exclusive with those in the triplet above. Note that the pair (ATM, TP53) was not sampled
with high frequency before removing EGFR, KRAS, and STK11. The reason is that the coverage of (ATM,
TP53) is not as high as other pairs in the triplet: for example, the pair (EGFR, KRAS) covers 90 patients
(with a coverage overlap of 0), while the pair (ATM, TP53) covers 76 patients (with a coverage overlap of 1).
Although the exclusivity of both sets is high, their coverage is low (< 60%), suggesting these gene sets are
not complete driver pathways. We hypothesize that the coverage is low because: (i) somatic mutations were
measured in only a small subset of genes; (ii) only single nucleotide mutations and small indels in these
genes were measured, and other types of mutation (or epigenetic changes) might occur in the “unmutated”

isolation (because of their significant coverage). Thus, larger sets of mutation groups containing these individually significant
mutation groups would also be reported as significant, even if the pattern of mutations in the set is not surprising after conditioning
on the observed frequency of mutations of single mutation groups.

3The suffix of the mutation group identifies the positions of mutations in the gene, as in BRAF 600-601, or the mutated functional
domain of the encoded protein, that is ECD for extracellular domain mutations, KD for kinase domain, and HD for helical domain,
as described in Thomas et al. (2007)
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patients. Either of these would reduce the coverage or imply that mutations in a superset of these genes were
not measured.

We examined the overlap between the patients with mutations in (ATM, TP53) and those with mutations
in (EGFR, KRAS, STK11). We found that the overlap was not significantly different from the expected
number in a random dataset, suggesting that mutations in these two sets are not exclusive. This is consistent
with our model, in which the two sets are part of two different pathways. While neither of these sets is
mutated in > 60% of the patients, this does not imply that they are not part of important cancer pathways,
for the same reasons regarding incomplete measurements outlined above.

2.4.3 Glioblastoma multiforme
We also applied the MCMC algorithm to 84 glioblastoma multiforme (GBM) patients from The Cancer
Genome Atlas (The Cancer Genome Atlas Research Network, 2008). Somatic mutations in these patients4

were measured in 601 genes. A total of 453 somatic single nucleotide mutations were identified and 223
genes were reported mutated in at least one patient. In addition, array copy number data was available for
each of these 601 genes in every patient. We recorded a gene as somatically mutated in a patient if it was
part of a focal copy number aberration identified in (The Cancer Genome Atlas Research Network, 2008),
discarding copy number aberrations for which the sign of aberration (i.e., amplification or deletion) was not
the same in at least 90% of the samples. Note that copy number aberrations (even focal aberrations) typically
encompass more than one gene, and the boundaries of such aberrations vary across patients. Since we only
collapse genes into “metagenes” if they are mutated in exactly the same patients, we will not collapse all of
the genes in a focal copy number aberrations into a “metagene” if the genes in the aberrations vary across
patients. Thus, the genes in overlapping, but not identical, aberrations will remain separate in our analysis. If
our algorithm selects any of these genes in a high weight set, it might select the gene (or genes) that is altered
in the largest number of patients, a behavior that is similar to “standard” copy number analysis methods that
select the minimum common aberration. We ran the MCMC algorithm sets of sizes k (2 ≤ k ≤ 10) for 107

iterations, and sampling one set every 104 iterations.
For k = 2, the pair of genes sampled with the highest frequency is (CDKN2B, CYP27B1), sampled with

frequency 18%. For k = 3, the most frequently sample set is (CDKN2B, RB1, CYP27B1), sampled with fre-
quency 10%. The second most sampled pair (frequency 11%) was CDKN2B and a metagene containing six
genes5, and the second most sampled triplet (frequency 6%) was CDKN2B, RB1, and the same metagene.
Moreover, the mutational profile of CYP27B1 was nearly identical to a metagene: CYP27B1 is mutated in
all of the same patients as the metagene plus one additional patient with a single nucleotide mutations in
CYP27B1. Because of this one extra mutation, CYP27B1 was not merged into the metagene. Further, the
six genes in the metagene are adjacent on the genome and are mutated by a copy number aberration (am-
plification) in all patients. This amplification also affects CYP27B1 which is adjacent to these genes. The
amplification was previously reported and the presumed target of the amplification is the gene CDK4 (Wik-
man et al., 2005). Thus it is likely thus that the triplet (CDKN2B, RB1, CDK4) is the triplet of interest and
the somatic mutation in CYP27B1 identified in one patient does not have a biological impact. This example
shows one of the advantages of the MCMC method: it allows one to identify additional “suboptimal” genes
sets of high weight, and those whose weight is close to the highest. We performed a permutation test as
described in Section 2.4.1 to compare the significance of (CDKN2B, CDK4) and (CDKN2B, CDK4, RB1).
The p-values obtained are 0.1 and < 10−2 respectively. Therefore the triplet (CDKN2B, CDK4, RB1) is at
least as significant as the pair (CDKN2B, CDK4). CDKN2B, RB1, and CDK4 are part of the RB1 signaling
pathway (Figure 5), and abnormalities in these genes are associated with shorter survival in glioblastoma

4Mutations were measured in 91 patients, but we removed 7 patients that were identified as hypermutated in (The Cancer
Genome Atlas Research Network, 2008). These patients have higher observed mutation rate, presumably due to defective DNA
repair.

5Genes in the metagene are TSFM,MARCH9, TSPAN31, FAM119B, METTL1, CDK4, CENTG1.
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patients (Backlund et al., 2003). Thus, our method identifies a triplet of genes with a known association to
survival rate directly from the somatic mutation data.

For k ≥ 4, no set is sampled with frequency ≥ 0.2%. We remove the set (CDKN2B, CDK4, RB1) from
the analysis, and ran the MCMC algorithm again. The pair (TP53, CDKN2A) is sampled with frequency
30% (p < 0.01). This pair is part of the p53 signaling pathway (Figure 5). As discussed in Section 2.4.2,
the fact that this pair is sampled with high frequency only after removing (CDKN2B, CDK4, RB1) is likely
due to the fact that not all genes and mutations in the pathways have been measured, resulting in different
coverage for the two pathways. Finally, removing both (CDKN2B, CDK4, RB1) and (TP53, CDKN2A) we
identify the pair (NF1, EGFR) sampled with frequency 44% (p < 0.01). NF1 and EGFR are both part of
the RTK pathway (Figure 5), that is involved in the proliferation, survival, and translation processes.

3 Discussion
We introduce two algorithms for finding mutated driver pathways in cancer de novo using somatic mutation
data from many cancer patients. Our algorithms, called De novo Driver Exclusivity (Dendrix), find sets of
genes that are mutated in many samples (high coverage) and that are rarely mutated together in the same
patient (high exclusivity). These properties model the expected behavior of driver mutations in a pathway,
or a “sub-pathway”. We define a weight on sets of genes that measures how well a set exhibits these two
properties. We show that finding the set M of genes with maximum weight is computationally difficult,
derive conditions under which a greedy algorithm gives optimal solutions, and develop a Markov Chain
Monte Carlo (MCMC) algorithm to sample sets of genes in proportion to their weight. Further, we prove
that the Markov chain converges rapidly to the stationary distribution.

We applied our MCMC approach to three recent cancer sequencing studies: lung adenocarcinoma (Ding
et al., 2008), glioblastoma (The Cancer Genome Atlas Research Network, 2008), and multiple cancer types
(Thomas et al., 2007). In the latter dataset we identify a group of 8 mutations in 6 genes that are present
at least once in a large fraction of patients and are largely exclusive. In the first two datasets, we identified
groups of 2-3 genes with those properties. These gene sets include members of well-known cancer pathways
including the Rb pathway, the p53 pathway, and the mTOR pathway. In the glioblastoma data, the mutations
in the 3 genes that we identify have been previously associated with shorter survival (Backlund et al., 2003).
Notably, we discover these pathways de novo from the mutation data without any prior biological knowledge
of pathways or interactions between genes. However, it is also important to note that some of the genes that
were measured in these datasets were selected because they were known to have a cancer phenotype, and
thus there is some ascertainment bias in the finding that individual genes (or groups of genes) are mutated
in many samples.

The results on the Thomas et al. (2007) data and on simulated data illustrate that our algorithm is able
to identify relatively large sets of genes with high coverage and high exclusivity. However, in the lung
adenocarcinoma and glioblastoma data, the sizes of gene sets that we identify is relatively modest. It is not
yet possible to conclude whether this is real phenomenon or a consequence of limited data. For example,
the numbers of patients and genes in these studies is relatively small, and the types of mutations that were
measured was not comprehensive. For example, we examined only single nucleotide (and small indel)
mutations in lung adenocarcinoma, and these plus copy number aberrations in the glioblastoma data. Other
types of mutations, such as rearrangements, or even epigenetic changes could alter the function or expression
of genes. In addition, considering mutation data at the level of individual genes might reduce the power to
distinguish driver mutations from passenger mutations. Thus, it would be interesting to analyze the other
datasets at “subgene” resolution to distinguish mutations at particular amino acid residues. We have shown
that our algorithms are useful at a finer scale of resolution by introducing additional columns to the mutation
matrix that correspond to protein domains, structural motifs, or other parts of a protein sequence.

The algorithms we presented assumed the availability of reasonably accurate mutation data. While the
ability to measure somatic mutations from next-generation DNA sequencing data or microarrays is becom-
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ing more routine, there remain challenges in the identification of somatic mutations from these data with
the incorrect prediction of somatic mutations (false positives) and the failure to identify genuine mutations
(false negatives) (Meyerson et al., 2010). One particular source of false negatives is the heterogeneity of
many tumor samples, which often include both normal cell admixture and subpopulations of tumor cells
with potentially different sets of mutations. False negatives are a particular problem with samples with low
tumor cellularity. Although the algorithms we propose are able to handle some false positives and false
negatives, high rates of these errors would reduce the exclusivity and coverage, respectively, of a driver
pathway. Moreover, this problem will be compounded if the genes in a driver pathway are mutated only in
a subpopulation of tumor cells.

Our algorithms could be improved in several ways. First, we could include additional information in
the scoring of mutations and gene sets. In the present analysis, we considered each mutation to have one of
two states (mutated or normal). Extending our techniques to use additional information about the functional
impact, or expression status, of each mutation is an interesting open problem. Second alternative weight
functions W (M) could be considered. For example, the inclusion of patient-specific mutation rates might
provide a more refined way to analyze hypermutated patients. However, we note that some of our analytical
results (e.g. the rapid mixing of the MCMC algorithm) relied on the particular form of the weight function
W (M) and these results would also require modification to maintain similar performance. Finally, the
performance of our algorithm in complex situations involving multiple, overlapping high weight sets of
genes requires further analysis. It is not yet clear whether such complex situations arise in cancer mutation
data.

Our algorithms will be useful for analysis of whole genome or whole exome sequencing data from large
sets of patients, and we anticipate that with these comprehensive datasets it will be possible to identify
larger sets of driver genes. Such datasets will soon be available from The Cancer Genome Atlas (TCGA)
and other large-scale cancer sequencing projects. We expect that the de novo techniques introduced here will
complement existing methods for assessing enrichment of mutations in known pathways. As larger cancer
datasets become available, it will be interesting to compare the exclusive gene sets identified by our tech-
niques to known cancer pathways. A key questions in the analysis of these larger datasets is whether mutual
exclusivity of driver mutations in genes in the same pathway is a widespread phenomenon, or whether it
is a feature of particular genes, pathways, or cancer types. We anticipate that our algorithms will be help-
ful in addressing this question. In addition, it would be interesting to extend these ideas to other types of
cancer genomics data, such as epigenetic alterations and structural aberrations. Finally, an intriguing future
direction is to generalize these techniques to analyze combinations of (rare) germline variants in genetic
association studies.

4 Methods
4.1 Complexity of the problem
The problems we are interested in are the Maximum Coverage Exclusive Submatrix Problem and the Max-
imum Weight Submatrix Problem (see Results for their definition). We show that these problems are com-
putationally difficult (for proof, see Supplemental Material).

Theorem 1. The Maximum Coverage Exclusive Submatrix Problem is NP-hard.

Theorem 2. The Maximum Weight Submatrix Problem is NP-hard.

Note that our weight W (M) is only one possible measure of the trade-off between coverage and ex-
clusivity For example, another approach is to minimize the maximum number of genes that co-occur in a
patient. The associated problem remains computationally difficult as shown in (Kuhn et al., 2005) (with
additional generalizations in (Dom et al., 2006)).
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4.2 A Greedy algorithm and Gene Independence Model
We propose the following greedy algorithm for the Maximum Weight Submatrix problem:
Greedy(k):

1. M = {g1, g2} ← pair of genes that maximizes W ({g1, g2}).

2. For i = 3, ..., k do:

(a) Let g∗ = argmaxg W (M ∪ {g}).
(b) M ← M ∪ {g∗}.

3. return M .

The time complexity of the algorithm is O
�
n2 + kn

�
= O

�
n2

�
. We analyze the performance of the

algorithm on mutation matrices generated from the following Gene Independence Model.

Definition 1. Let A be an m× n mutation matrix such that M̂ is the maximum weight column submatrix of
A and |M̂ | = k. The matrix A satisfies the Gene Independence Model if and only if

1. Each gene g /∈ M̂ is mutated in each patient with probability pg, independently of all other events,
with pg ∈ [pL, pU ] for all g.

2. W (M̂) is Ω (|S|), i.e. W (M̂) = rm for a constant r, 0 < r ≤ 1;

3. For all �, any subset M ⊂ M̂ of cardinality |M | = � satisfies: W (M) ≤ �+d
k W (M̂), for a constant

0 ≤ d < 1.

We show that the greedy algorithm above will produce the optimal solution with high probability for
any mutation matrix generated from the Gene Independence Model, when the number of rows (patients) is
sufficiently large.

Theorem 3. Suppose ε > 0 and A is an m × n mutation matrix generated from the Gene Independence
Model that satisfies

m ≥
�
1 +

ε

2

�
log n×max

��
2r

k
− 2(pU − p

2
L)

�−2

,

�
r(1− d)

k
− pU +

4rpL
k

�−2
�
. (1)

Then the greedy algorithm identifies the m × k column submatrix M̂ with maximum weight W (M̂) with
probability at least 1− 2n−ε.

For proof of Theorem 3 see Supplemental Material.

4.3 Markov Chain Monte Carlo (MCMC) algorithm
The basic idea of MCMC is to build a Markov chain whose states are the possible configurations and
to define transitions between states according to some criterion. If the number of states is finite and the
transitions are defined such that the Markov chain is ergodic, then the Markov chain converges to a unique
stationary distribution. The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) gives a
general method for designing transition probabilities that gives a desired stationary distribution on the state
space. However, the Metropolis-Hastings method does not guarantee fast convergence of the chain, which
is a necessary condition for practical use of this method. In fact, if the chain converges slowly then it may
take an impractically long time before the chain samples from the desired distribution. Defining transition
probabilities so that the chain converges rapidly to the stationary distribution remains a challenging task.
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Despite significant progress in recent years in developing mathematical tools for analyzing the convergence
time (Randall, 2006), our ability to analyze useful chains is still limited, and in practice most MCMC
algorithms rely on simulations to provide evidence of convergence to stationarity (Gilks, 1998).

We use a Metropolis-Hastings algorithm to sample sets M ⊆ G of k genes with a stationary distribution
that is proportional to ecW (M) for some c > 0, and we show that the resulting chain converges rapidly.

Initialization: Choose an arbitrary subset M0 of k genes in G (the set of all genes).
Iteration: for t = 1, 2, . . . obtain Mt+1 from Mt as follows:

1. Choose a gene w uniformly at random from G.

2. Choose v uniformly at random from Mt.

3. Let P (Mt, w, v) = min[1, ecW (Mt−{v}+{w})−cW (Mt)]. 6

4. With probability P (Mt, w, v) set Mt+1 = Mt − {v}+ {w}, else Mt+1 = Mt.

It is easy to verify that the chain is ergodic with a unique stationary distribution π(M) = ecW (M)
�

R∈Mk
ecW (R) ,

where Mk = {M ⊂ G : |M | = k}. The efficiency of this algorithm depends on the speed of convergence
of the Markov chain to its stationary distribution. We are able to analyze the mixing time of the chain
because we do not restrict the set of states that the chain can visit, focusing instead on the desired stationary
probabilities of the various states.

Let P t
I,M be the transition probability from initial state I to state M in t steps of the Markov chain. We

measure the distance between the distribution of the chain at time t and the stationary distribution by the
variation distance between the two distribution:

∆I(M) =
1

2

�

M∈Mk

|P t
I,M − π(M)|.

The �-mixing time of the chain is

τ(�) = max
I

min{t | ∆I(M) ≤ �}.

A chain is rapidly mixing if τ(�) is bounded by a polynomial in the size of the problem (m = |S| and
n = |G| in our case) and log �−1.

We show that there is a non-trivial interval of values for c for which the chain is rapidly mixing (for
proof, see Supplemental Material). Our proof uses a path coupling argument (Bubley and Dyer, 1997). In
path coupling we define coupling only on pairs of adjacent states in the Markov chain. Let Mt and M �

t be
the states of two copies of the Markov chain at time t, and assume that Mt = M �

t + {z} − {y} (thus, the
two states are adjacent in the Markov chain). We use the following coupling: assume that the first chain
chooses w ∈ G and v ∈ Mt in computing the transition to Mt+1. The second chain uses the same w, and if
v ∈ Mt ∩Mt+1 it also uses the same v. Otherwise, if in the first chain v = y, then the second chain uses
v = z. If P (M �

t , w, v) ≤ P (Mt, w, v) and the first chain performs a switch then the second chain performs
a switch with probability P (M �

t , w, v)/P (Mt, w, v). If P (M �
t , w, v) ≥ P (Mt, w, v) then the second chain

performs a switch whenever the first chain does, and when the first chain did not perform a switch the
second chain switches with probability P (M �

t , w, v) − P (Mt, w, v). Our analysis applies the following
simple version of path coupling adapted to our setting (see (Bubley and Dyer, 1997) and (Mitzenmacher and
Upfal, 2005)):

6For ease of notation in this section given sets A and B we denote their difference by A − B = {x | x ∈ A and x �∈ B}, and
their union by A+B = {x | x ∈ A or x ∈ B}.
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Theorem 4. Let φt = |Mt − M �
t |, and assume that for some constant 0 < β < 1, E[φt+1| φt = 1] ≤ β,

then the mixing time

τ(�) ≤ k log(k�−1)

1− β
.

Using the above, we prove the following convergence result for our chain.

Theorem 5. The MCMC is rapidly mixing for some c > 0.

Theorem 5 gives a range of values of c where the resulting chain will converge rapidly. We explored
different values of c, and use the c = 0.5, which we found empirically to give the best tradeoff between the
exploration of different sets and the convergence to sets with high weight W (M) on simulated data. We use
c = 0.5 for both the experiments on both simulated data and real cancer mutation data described below.

4.3.1 Extension to Multiple Sets of Mutated Genes
There are multiple capabilities that a cell has to acquire in order to become a cancer cell; for example, Hahn
and Weinberg (2002) describe 6 capabilities. Thus, we expect that a small number of pathways will be
mutated, and in each pathway the mutations in the corresponding genes will have both high exclusivity and
high coverage. We aim to recover sets of genes in each of these pathways. If the sets of genes in each
pathway are disjoint, then an iterative procedure will suffice: once we identify a set M with high weight,
we remove the genes in M from the analysis and look for high weight sets in the reduced mutation matrix.
Thus, if two sets M1 and M2 of genes are disjoint and have high weight then the iterative procedure finds
both, because exclusivity is required only within and not between sets. If instead M1 and M2 have genes in
common, then removing one of the them could remove part of another. If the intersection is small, we will
still be able to identify the remaining part of the other set. The problem of identifying two sets M1 and M2

of genes that both have high exclusivity and high coverage (but with no exclusivity between them) and have
a number of genes in common is an interesting open problem.

4.4 Cancer data
In all tumor patients we consider, we use both single nucleotide mutations and small indels reported in
the original studies (Ding et al., 2008; The Cancer Genome Atlas Research Network, 2008; Thomas et al.,
2007). For glioblastoma patients, we also consider focal copy number aberrations identified in the original
study (The Cancer Genome Atlas Research Network, 2008), discarding copy number aberrations for which
the sign of aberration (i.e., amplification or deletion) was not the same in at least 90% of the samples.

We reduce the size of the mutation matrix by combining genes that are mutated in exactly the same
patients into larger “metagenes”. For example, suppose there exists a set S = {g1, g2} of two genes that are
mutated in the same set of patients. Two sets X and Y with X\Y = {g1} and Y \X = {g2} satisfy W (X) =
W (Y ). Thus, both sets have the same probability. The same result holds when |S| > 2. To improve the
efficiency of the MCMC sampling procedure we replace a maximal set of genes T = {g1, g2, . . . } that are
mutated in the same patients with a single “metagene” gT whose mutations are the same patients. Copy
number aberrations typically encompass more than one gene, and the boundaries of such aberrations vary
across patients. Since we only collapse genes into “metagenes” if they are mutated in exactly the same
patients, we will not collapse all of the genes in a copy number aberrations into a metagene if the genes in
the metagene vary across patients.

4.5 Software
A Python implementation of Dendrix (De novo Driver Exclusivity) is available at http://cs.brown.
edu/people/braphael/software.html.
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M1 M2 maxother avgother
π̃(·) 24.5 8.6 0.9 1.6× 10−4

W (·) 80 78 73 56

Table 1: MCMC results on simulated data. π̃(Mi) is the frequency of Mi, π̃(maxother) is the maximum frequency with
which set different from M1 and M2 is sampled, and π̃(avgother) is the average frequency with which a set different
from M1 and M2 is sampled.
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