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discovery of chromosomal abnormalities in cancer cells, 
resulting from large-scale rearrangements of the DNA 
sequence. In some types of leukemia, for example, chro-
mosomes 9 and 22 undergo a translocation that swaps 
DNA between these chromosomes. Unfortunately, finding 
other important large-scale rearrangements has been a 
challenge. Many cancer cells contain dozens of chromo-
somal abnormalities, and these differ among individuals 
with the same type of cancer. A natural question is whether 
some or all of these rearrangements contribute to cancer 
or are merely random occurrences. 

ADVANCES IN DNA SEQUENCING
The emergence of DNA sequencing enabled biologists 

to measure single-nucleotide mutations with increasing 
speed and accuracy. These studies showed that the “typi-
cal” cancer genome might have hundreds to thousands of 
somatic mutations of different types. However, most of the 
somatic mutations in a cancer cell are benign passenger 
mutations. A much smaller fraction of driver mutations are 
important for cancer development, with current estimates 
ranging from 10 to 20 driver mutations per tumor.

Because cancer cells have a large variety of relatively 
rare mutations, genome-wide studies for identifying cancer 
driver mutations require sequencing numerous patients. 
This task became feasible in the past five years with the 
development of next-generation sequencing technologies 
such as Roche’s 454, Illumina’s Genome Analyzer, and 
Applied Biosystems’ SOLiD (Sequencing by Oligonucle-
otide Ligation and Detection), which provide low-cost, 
high-throughput sequencing through massive parallel-
ism.1 While each has unique characteristics, all of these 
technologies collect dozens or hundreds of millions of 

C ancer is a disease driven by somatic mutations 
in an individual’s DNA sequence, or genome, 
that accumulate during the person’s lifetime. 
These mutations arise during DNA replication, 

which occurs as cells grow and divide into two daugh-
ter cells. Mutations arise as errors in the DNA replication 
process and distinguish the DNA in the daughter cells 
from the parental cells. They take place on a continuum 
of scales—ranging from single “character” substitutions 
(the nucleotides A, C, T, and G of DNA) to structural vari-
ants that duplicate, delete, or rearrange larger genome 
segments. Single-nucleotide substitutions occur at a rate of 
approximately 10-9, so that on average each daughter cell 
contains around six somatic mutations. Most are benign, 
or inconsequential for the organism. However, in certain 
circumstances, dangerous somatic mutations can accu-
mulate in a collection of cells and lead to cancer.

Theodor Boveri first articulated the idea that mutations 
cause cancer in 1914, a remarkable insight as the structure 
of DNA, or even the concept of a gene, was not yet known. 
Decades later, cytogenetic techniques that researchers 
use to directly visualize chromosomes in cells led to the 
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short DNA sequences or reads simultaneously, correspond-
ing to billions of DNA nucleotides. Improvements in these 
technologies are continuing at a rapid pace and are near-
ing the goal of producing a human (or cancer) genome at 
extremely low cost (less than $1,000).

Next-generation DNA sequencing has enabled large 
cancer-sequencing efforts including The Cancer Genome 
Atlas (TCGA; http://cancergenome.nih.gov) in the US and 
many others worldwide through the International Cancer 
Genome Consortium (ICGC; www.icgc.org). These projects 
identify somatic mutations in hundreds to thousands of 
patients with different types of cancer by sequencing each 
patient’s tumor and, in some cases, the healthy tissue as 
well. In particular, TCGA aims to comprehensively identify 
genomic changes—including somatic mutations and other 
types of data—from about 20 different cancer types by 
2014. For each cancer type, researchers will collect and 
analyze some 500 samples. 

A key question for such projects is how to use the result-
ing DNA sequence to understand the mutations that cause 
specific properties of cancer cells. 

COMPUTATIONAL CHALLENGES
There are presently two main computational challenges 

in applying next-generation DNA sequencing to cancer 
genomes. 

The first is how to derive catalogs of mutations in a 
genome from the data generated by a DNA sequencing 
machine. Although these machines produce a remarkable 
number of DNA sequences, these sequences are only reads 
(about 30 to 1,000 nucleotides), not full-length genomes. 
Obtaining the catalog of somatic mutations from such 
short sequences requires algorithmic techniques, an active 
area of investigation in recent years.2 

Assuming we have obtained a list of all somatic mu-
tations in the cancer genome, the second challenge is 
to distinguish the functional driver mutations from the 
random passenger mutations. The ultimate determinant 
of function is a biological experiment, but the ability to 
measure mutations far exceeds the capacity to experi-
mentally evaluate each mutation’s function. One way to 
predict candidate driver mutations is to examine the so-
matic mutations measured in a large population of cancer 
patients and identify recurrent mutations that occur more 
frequently than expected by chance, or, alternatively, re-
currently mutated genes, which are genes that are mutated 
more frequently than expected.  

CANCER GENE IDENTIFICATION 
To formalize the problem of predicting recurrently mu-

tated genes, we represent the measured somatic mutations 
as a binary mutation matrix with patients on the rows and 
genes on the columns, where a 1 in an entry indicates 
that the corresponding gene is mutated in the correspond-
ing patient. Given a mutation matrix, the goal is to find 
genes that are mutated in more patients than expected 
by chance. 

Suppose we were to predict driver genes as the genes 
that are mutated in the largest number of patients. For 
example, if we examine mutation data from 316 patients 
in a recent large-scale sequencing study of ovarian cancer,3 
the most frequently mutated gene is TP53 (tumor protein 
53), a well-known cancer gene involved in DNA repair and 
other functions. The second most frequently mutated gene, 
TTN, is also special, but not because of a biological func-
tion in cancer: it is the largest gene in the human genome. 
Thus, TTN’s high mutation frequency is explained by its 
exceptional length, not by its function. Distinguishing such 
cases requires a probabilistic model.

PROBABILISTIC MODEL
Our probabilistic model for cancer mutations, like many 

probabilistic models, is based on a coin-flipping experi-
ment. Suppose that mutations occurred randomly with 
probability q. Then, for a given gene in one patient, the 
status of a gene (mutated or not) is an experiment with two 
possible outcomes. We model this as a coin flip resulting 
in H or T, with Pr[H] = q and Pr[T] = 1    – q. For simplicity, 
assume that the coin is fair—that is, q = 1/2.

Given a set of N patients, the total number of heads in 
N coin flips is described by a binomial random variable of 
parameters N and q = 1/2. Since our goal is to find genes 
that harbor nonrandom mutations, we want to identify 
coins that are not fair, and to reject the claim of the coin 
being fair only if we are fairly certain. In mathematical 
terms, this means rejecting the claim if the probability of 
observing numerous heads is small.

We construct an algorithm, CoinFlip, that decides 
whether or not to reject the claim that the coin is fair based 
on the observed number R of heads, and a threshold α for 
rejecting the claim. CoinFlip is a special case of hypothesis 
testing. Formally, we define the null hypothesis that the 
coin is fair and the alternative hypothesis that the coin is 
biased toward heads. For a given threshold α, we reject 
the null hypothesis in favor of the alternative if the tail 
probability—the probability of obtaining at least R heads 
assuming the null hypothesis—is less than α. The smallest 
threshold for which we would reject the null hypothesis for 
a given observed value R is called the p-value of the test.

We now have a model of “expected by chance” to iden-
tify cancer genes. We run the CoinFlip algorithm for each 
gene, and thereby compute the probability, or p-value, 

The ability to measure mutations far 
exceeds the capacity to experimentally 
evaluate each mutation’s function.
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that the observed number of mutated patients or more 
is obtained under the null hypothesis. We assume a null 
hypothesis where all mutations are passenger mutations 
with probability q and then compute the tail probability 
using a binomial model. In particular, we examine a single 
gene g and model the presence or absence of a mutation in 
a patient as the outcome of a coin flip, with a fixed prob-
ability q of becoming heads; q depends on the gene’s length 
and on the rate r that passenger mutations occur, which 
must be estimated from the data. 

Obtaining an accurate estimate of r is challenging 
because the passenger mutation rate depends on many 
parameters whose values are not easily determined (for 
example, the times that tumor cells have divided into 
daughter cells). Moreover, r is usually assumed to be the 
same for all patients and all genes but in reality differs 
among patients and possibly among genes. Current meth-
ods approximate r, but the details of this approximation 
and other issues related to single-gene tests of recurrence 
are subjects of debate.4

We use the CoinFlip algorithm to determine whether 
the number of mutated patients is significantly higher than 
expected, as Figure 1 shows. If so, the gene is a candidate 
driver gene in cancer. This test (with a more detailed model 
for the passenger mutation rate) is essentially current prac-
tice in cancer genome projects.5

MULTIPLE HYPOTHESIS TESTING PROBLEM 
We examine the same ovarian cancer data using 

the CoinFlip test, where for a given gene the passenger 
mutation probability is determined by a mutation rate 
per nucleotide and the gene’s length. Three genes have 
p-values less than 0.01 and thus could be considered 
surprising: TP53, BRCA1, and RB1 (note that TTN is no 
longer statistically significant). These are among the most 
well-known cancer genes. In addition to the previously 
mentioned TP53, genetic variants in BRCA1 give increased 
risk of breast cancer and RB1 is mutated in retinoblas-
toma, a childhood cancer. Thus, a modern-day sequencing 
machine and straightforward statistical analysis have re-
discovered decades of cancer research! 

Unfortunately, the analysis has overlooked one small 
detail, what statisticians refer to as the multiple hypothesis 
testing problem.

To motivate this problem, we return to the CoinFlip al-
gorithm. Suppose we choose a fixed threshold α to reject 
the null hypothesis that the coin is fair. Then, we make an 
error if we reject the hypothesis when the coin is fair. The 
probability of making an error is exactly α. If we run the 
algorithm on 50 fair coins, with a probability of error α 
for each coin, then the probability of not making a single 
error is (1 – α)50. Alternatively, Pr[at least one error] =  
1 – (1 – α)50, which is approximately 0.4 when α = 0.01. 
Thus, if we apply CoinFlip to 50 fair coins, there is a 40 

Figure 1. Given the observed somatic mutations in many 
cancer patients, CoinFlip—a simple algorithm based on the 
binomial distribution—finds those genes that are mutated 
in more patients than expected by chance. 
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percent probability that we will falsely reject the fair coin 
claim at least once. Moreover, the more fair coins we test, 
the less likely that all of the coins are called fair. Thus, even 
if the threshold α for deciding when to reject the claim of 
the coin being fair is small, if we test enough coins, Coin-
Flip will eventually reject the claim for one of the coins.

A more general, but in this case not as accurate, analysis 
is to see that the event of an error on at least one coin is the 
union of the events of errors on individual coins. Although 
these events are not disjoint, the sum of the probabilities 
of the single events bounds the probability of their union. 
This constitutes the Bonferroni correction, which in our 
scenario states that if we are testing n coins and want a 
bound α on the probability of incorrectly calling one or 
more coins as not fair, we can test each single coin with the 
CoinFlip algorithm using as error threshold α/n.

The resulting algorithm accounts for the fact that we 
use n coins. If we run this algorithm with a Bonferroni 
correction on the ovarian cancer data, the only statistically 

significant gene is TP53. This is somewhat disappointing 
given our knowledge about the importance of BRCA1 and 
RB1 in cancer, but statistical significance and biological 
significance are not always the same, particularly since 
statistical techniques might require many more samples 
than the 316 patients here. In fact, using more sophisti-
cated techniques developed in the past 20 years that make 
multiple hypotheses corrections based on the false discov-
ery rate (FDR),6 we recover these two genes. 

However, this data presents a larger problem. Even 
with the FDR technique we predict only a total of nine 
driver genes, many of which are mutated in only a small 
number of patients, and not enough to explain cancer in 
all patients. This phenomenon is not unique to the ovarian 
cancer data. Single-gene analysis techniques are inher-
ently too weak to identify most driver mutations. This is 
due in part to the number of patients that were sequenced 
and errors in the mutation data. However, there is also a 
biological reason: driver mutations target groups of genes, 
or pathways.

DRIVER PATHWAYS
Genes do not act in isolation, but rather interact with 

other genes (and the proteins these genes produce) in com-
plex signaling and regulatory networks. Cancer is often 
called a disease of pathways, as it is pathways, or groups 

of genes, that are mutated to perturb a particular func-
tion in cancer. There are many ways to deregulate a given 
pathway by mutating one of its genes, and each cancer pa-
tient might have mutations in a different subset of genes in 
an important pathway. Testing genes independently does 
not take into account the fact that genes interact with one 
another. Rather than test individual genes, we should test 
groups of genes. 

Unfortunately, testing groups of genes is difficult to do 
exhaustively because there are too many groups to test. 
For example, there are about 1022 groups of six genes in 
the human genome. Not only must we perform a p-value 
calculation for each group, but we also must account for 
the number of hypotheses or groups that we test, using one 
of the multiple hypothesis correction procedures above. 
Therefore, standard practice in cancer genome studies is 
to assess enrichment of mutated genes only in pathways 
known to perform a certain function. Typically, this is done 
by treating a known pathway as a “bag of genes” (without 
considering the interactions between genes) and assessing 
whether mutations are enriched in the “concatenation of 
genes” using variations of the single-gene test. 

However, this approach will not discover any new group, 
nor does it account for the fact that signaling pathways are 
interconnected in larger signaling networks. Pathways 
cannot be viewed in isolation, as the different pathways 
interact. Rather, the genes involved in cancer “affect mul-
tiple pathways that intersect and overlap.”7

Thus, methods that identify groups of genes with a sig-
nificant number of mutations but do not restrict attention 
to only known pathways are desirable. We recently de-
veloped two algorithms for this purpose. One considers 
all interactions within a cell, represented as a network or 
graph, and finds subnetworks that are mutated more than 
expected. The second algorithm uses no prior information 
about interactions between genes, but rather exploits some 
properties of the patterns of mutations that are expected 
for interacting genes.

HOTNET: MUTATED SUBNETWORKS
The first algorithm, HotNet,8 considers a large-scale in-

teraction network and mutation data from many patients, 
as Figure 2 shows. HotNet finds subnetworks, or clusters of 
interacting genes, that are mutated in a significant number 
of patients. The algorithm thus generalizes the analysis of 
recurrent mutations in single genes.

Human interaction network
The human interaction network is not presently known. 

However, researchers have assembled several large-
scale interaction networks from various data sources 
including well-characterized experimental pathways, 
high-throughput interaction experiments, and computa-
tional predictions.9 While these networks are incomplete 

Methods that identify groups of genes 
with a significant number of mutations 
but do not restrict attention to only 
known pathways are desirable.
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and inaccurate, they encode useful information that re-
searchers can combine with mutation data to identify 
genes important in cancer.

As the bottom left of Figure 2 shows, an interaction 
network can be represented as an undirected graph with 
nodes representing genes and edges representing inter-
actions between them. Connected subgraphs constitute 
subnetworks.

One way to find subnetworks that are mutated in a 
significant number of patients is to test each possible 
subnetwork using an appropriate statistical test. How-
ever, there are two problems with this approach. First, 
testing many subnetworks is computationally difficult 
and reduces statistical power, as the test’s p-value must 
be corrected for the number of subnetworks tested. This 
can be quite large for most interaction networks. For 
example, the number of subnetworks with at most six 
nodes in the network obtained from the Human Protein 
Reference Database exceeds 1010. Second, subnetworks 
are not independent. An extreme example is provided 
by nodes with high degree, or hubs, in an interaction 
network. If these hub genes are mutated, a large number 
of subnetworks containing them will be flagged as 
significant.

HotNet addresses these problems in two ways. First, 
it uses a diffusion process on the interaction network to 
retain information about a gene’s local topology while 

minimizing spurious connections from hubs. Second, it 
employs a new multihypothesis test that bounds the FDR 
of hot subnetworks.

Heat diffusion model
To understand the diffusion process, consider two sce-

narios. In one scenario, two mutated genes are connected 
by a single low-degree node in the network, while in the 
other, a high-degree node connects the mutated genes. 
Because there are many paths through the high-degree 
node, it is more surprising to see mutated genes connected 
by a path through a low-degree node in the network than 
mutated genes connected by a path through a high-degree 
node.

To formalize this intuition, we use a model of heat dif-
fusion. Each mutation on a gene is a source of heat on the 
network and diffuses this heat to its neighbors. We place 
an amount of heat on a gene in proportion to the frequency 
of the gene’s mutation and allow heat to diffuse over the 
edges for some length of time. 

If we place the heat source on a low-degree node, heat 
will diffuse to the small number of neighbors in the graph, 
and thus these neighbors will remain hot for an appre-
ciable length of time. On the other hand, heat placed on a 
high-degree node will diffuse to the many neighbors, and 
thus none of the nodes will be very hot. After allowing 
heat to diffuse for a fixed length of time, highly mutated 
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Figure 2. The HotNet algorithm combines mutation data and protein-protein interaction network information to find hot sub-
networks, or clusters of interacting genes, that are mutated in a significant number of cancer patients. On each gene, HotNet 
places a source of heat proportional to the number of mutations on the gene. The heat diffuses on the network for a fixed time, 
revealing the hot subnetworks. Finally, a statistical test assesses the significance of the list of observed subnetworks.
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subnetworks will thus become hot spots on the graph; 
HotNet breaks the graph by removing cold edges, thus 
dividing the network into subnetworks. The algorithm 
assesses statistical significance by comparing the size of 
the resulting subnetworks to those obtained by performing 
the same procedure using an appropriate random model 
for mutations. HotNet uses a Laplacian matrix to compute 
heat diffusion. 

The heat diffusion model is equivalent to a certain 
random walk on the graph and thus somewhat resembles 
the PageRank algorithm that Google originally used to rank 
webpages. However, a key difference is that PageRank and 
related algorithms examine only the graph’s topology, while 
HotNet considers both the topology and the nodes’ values.

Multihypothesis test
A two-stage multihypothesis test that bounds the FDR 

of the entire set of identified hot subnetworks circum-
vents the multiple hypothesis testing problem that arises 
if all subnetworks are tested as individual hypotheses. 
Our statistic is the number of subnetworks with at least 
a certain number of genes. In the first step, we assess 
the significance of the number X(s) of subnetworks of a 
certain minimize size s. The number of measured genes 
now bounds the number of hypotheses to test, which is 
much smaller than the number of pathways. We can thus 
determine an s such that the number X(s) of connected 
components of size ≥ s is significant. However, the fact that 
X(s) is significant does not imply that any of the individual 
subnetworks is significant. Thus, we add a second step that 
rigorously bounds the FDR of the list of hot subnetworks. 

Example application
We applied the HotNet algorithm to mutation data from 

the 316 ovarian cancer patients whose genes were se-
quenced as part of the TCGA project.3 Using a large protein 
interaction network with more than 37,000 interactions, 
we found 33 hot subnetworks whose genes were mutated 
in a significant number of patients. Based on our statisti-
cal test, around one-third of these subnetworks would be 
expected to be true discoveries. Moreover, nearly one-third 
of these subnetworks corresponded to groups of proteins 
with known biological function. 

DENDRIX: DE NOVO DRIVER EXCLUSIVITY 
Because biological interaction networks are far from 

complete, as the number of patients increases, it might 
become possible to identify groups of mutated genes with-
out the network. Indeed, the network’s primary utility is 
to reduce the number of groups (hypotheses) to test. How-
ever, without the network, there are too many groups of 
genes to test exhaustively, since considering all the groups 
up to a reasonable size would be computationally ineffi-
cient and result in a loss of statistical power.

Mutual exclusivity and coverage
Current knowledge of mutations in cancer provides two 

constraints on groups of genes to examine. First, because 
a driver mutation is rare, if a group of genes (or a pathway) 
is important for cancer, typically only a single gene in the 
group will be mutated in a patient. Thus, there is a pattern 
of mutual exclusivity between driver mutations. Second, 
an important cancer pathway will be mutated in most 
patients. Thus, the mutations in a pathway important for 
cancer show high patient coverage.

These constraints led us to examine particular mutation 
patterns in the mutation matrix. First, mutual exclusiv-
ity implies that we want to identify a group of genes, or 
columns, in the matrix such that each patient (row) has at 
most one mutation. We refer to this as an exclusive sub- 
matrix. We define the coverage of a submatrix as the 
number of rows with at least one mutation in the group 
of columns (genes). We are interested in exclusive subma-
trices that cover many patients—that is, for which many 
patients have a mutation in at least one gene. 

We thus define the maximum coverage exclusive subma-
trix problem: find the exclusive submatrix with k columns 
with maximum coverage. This problem is NP-hard, there-
fore no algorithm efficient in all instances is expected to 
exist for its solution. Perhaps more importantly, the ex-
clusivity constraint is too restrictive for real data where 
errors or passenger mutations might result in a pathway 
important for cancer to present nonexclusive mutations.

We thus focus on finding approximately exclusive 
sets of genes (columns) that cover many patients. Let Γ(g) 
denote the set of patients with a mutation in gene g. We 
define the coverage overlap of a set M of genes to be the 
difference between the sum of the coverages of the single 
genes in the set and the coverage of the set

        
γ M g M

g M
( ) = ( ) ( )

∈∑     – Γ Γ .

Our goal is to simultaneously maximize coverage and 
minimize coverage overlap. There is an inherent tradeoff 
in these criteria, so we define the weight of a set of genes 
as the difference between coverage and coverage overlap: 

W M M M M g
g M

( ) = ( ) ( ) = ( ) ( )
∈∑     –       – Γ Γ Γγ 2 .

We thus define the maximum weight submatrix problem: 
find the submatrix with k columns with maximum weight. 
This problem is also NP-hard. 

MCMC-based solution
We developed two algorithms to solve the maximum 

weight submatrix problem. The first is a simple greedy 
algorithm that yields maximum weight submatrices with 
high probability when the data comes from a generative 
model well suited for single-nucleotide mutations. The 
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second algorithm uses a Markov chain Monte Carlo method 
to sample submatrices in proportion to their weight. The 
MCMC method does not require any assumptions about 
the data.

The greedy algorithm iteratively adds columns (genes) 
that increase the weight. This algorithm will return the 
driver pathway provided the mutations follow a particu-
lar independent-genes model that is reasonable for some 
types of cancer data and the number of samples is reason-
ably large. Unfortunately, the bounds obtained require a 
number of samples that is an order of magnitude larger 
than what is currently available.

Thus, we also developed an MCMC approach. With this 
approach, we consider different gene sets of fixed size k 
as states of a Markov chain, and transitions are substitu-
tions of a gene in a set. We use the Metropolis-Hastings 
procedure to define the transition probabilities between 
states so that the Markov chain converges to the desired 
distribution where the probability of a set M is proportional 
to its weight W(M). According to Markov chain convergence 
theory, under certain reasonable assumptions, running the 
chain long enough converges to a stationary distribution. 
In general, the Metropolis-Hastings procedure is guaran-
teed to converge to the desired distribution, but the time 
to convergence can be very long. Thus, MCMC approaches 
use various heuristics to determine how many transitions 
are necessary before outputting a state.

In our case, we prove that the Markov chain converges 
rapidly, making it possible to efficiently sample from the 
distribution of gene sets. A major advantage of the MCMC 
approach is that it samples from distributions of sets rather 
than identifying a single optimal set. Moreover, unlike the 
greedy algorithm, it does not require any assumptions 
about the mutations.

We implemented the resulting MCMC method as the De 
novo Driver Exclusivity (Dendrix) algorithm10 and ran it on 
simulated data and real cancer sequencing data. The sets 
of genes that Dendrix sampled with high frequency inter-
act or have common interacting partners in well-known 
cancer signaling pathways. On brain cancer (glioblas-
toma) data, our method identifies three sets of genes that 
form parts of signaling pathways: one consists of three 
genes, as Figure 3 shows, and the other two consist of 
two genes. Thus, Dendrix automatically discovers groups 
of interacting genes solely from the pattern of mutations 
in the genes. 

T he analysis of cancer genome data presents many 
computational challenges. Here, we have focused 
on one of the key challenges: to distinguish driver 

mutations relevant for cancer development from passen-
ger mutations that do not have functional implications and 
are not important for cancer. While an experiment pro-

vides the ultimate evidence that a mutation is functional, 
the large amount of cancer sequences now available 
demand new computational approaches to prioritize 
mutations for biological validation. Going a step further, 
such approaches are also useful to predict which combi-
nations of mutations are driver mutations. 

Appropriate algorithms can significantly reduce the 
number of combinations of possible driver mutations that 
need to be tested in expensive and time-consuming wet 
lab experiments. These algorithms need to be time and 
space efficient to handle massive datasets, and they must 
rely on rigorous statistical methods to reduce the number 
of candidate driver mutations (false positives) while also 
not eliminating true driver mutations from consideration 
(false negatives). 

Both of the algorithms that we designed to find groups of 
genes that are functionally redundant for the development 
of cancer generalize the single-gene test that is commonly 
used to identify driver genes by their recurrence in many 
cancer patients. Moreover, neither algorithm restricts 
groups of genes to those already known to be involved in 
cancer, thus allowing the discovery of novel combinations 
of mutations. The HotNet algorithm relies on prior knowl-
edge of the interactions between genes, represented as a 
graph, to restrict the search space of possible combina-
tions. The Dendrix algorithm exploits some combinatorial 
properties of the patterns of mutations that are expected 
for driver pathways.

More research is required to develop better algorithms 
for the identification of driver genes and driver pathways, 

Figure 3. The De novo Driver Exclusivity (Dendrix) algo-
rithm uses a Markov chain Monte Carlo method to sample 
submatrices of the mutation matrix with high coverage 
and exclusivity. In this case, Dendrix identifies a set of three 
genes—CDKN2B, CDK4, and RB1—in brain cancer data cor-
responding to a known important pathway.
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and to use the resulting information to improve cancer 
treatments. While here we focused on mutation data, a 
wealth of other types of genomic and epigenomic data—
on gene expression, DNA methylation, and so on—can be 
combined to make more accurate predictions. The Cancer 
Genome Atlas and other similar projects are collecting 
multiple data types on the same patients that can be used 
for such research. Finally, identifying the driver mutations 
and pathways is only a first step toward understanding 
how these mutations affect a particular patient’s prognosis 
and treatment. 

The data to address all of these questions is being 
produced at a rapid pace, and the major challenge for 
computational biologists going forward is to interpret  
this data. 
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