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1 INTRODUCTION

Distillation is the most common unit operation in the
chemical industry and understanding its behaviour has been
a defining characteristic of a good chemical engineer. Yet,
distillation research has repeatedly been proclaimed to be a
dead area, and some universities have even considered no
longer teaching the basics of McCabe-Thiele diagrams.
However, there has been renewed interest in the last few
years, especially since distillation columns have become a
favorite subject in the process systems engineering field,
including the areas of process synthesis, process dynamics
and process control. The reason is that distillation columns
are themselves a system; a distillation column may be
viewed as a set of integrated, mostly cascaded, flash tanks.
However, this integration gives rise to a complex and non-
intuitive behaviour, and it is difficult to understand the
system (the column) based on knowledge about the
behaviour of the individual pieces (the flash tanks).

In this paper I want to present, in a simple manner, some
of the important issues for understanding the dynamics,
operation and control of distillation columns, including
some useful tools for controllability analysis in the
frequency domain. The goal is to develop insight and
intuition. It is hoped that, when the reader has understood
the essentials, then the details can easily be obtained from
the literature.

Five years ago, I wrote a quite detailed literature survey
on distillation dynamics and control', concentrating on the
the period 1985-1991, and I had the ambition to update that
survey, but I have not had the capacity to keep up with my
ambition. In any case, the 1992 survey paper was in 1997
reprinted in the Norwegian journal Modeling, Identification
and Control, so it should be easily available. The reader
should consult it for more detailed and appropriate
references.

However, I would like to mention at least a few of the
important books. In terms of design and steady-state
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behaviour there are many books, but let me here only
mention King? which gives a comprehensive and insightful
treatment. In terms of distillation dynamics and control, the
book by Rademaker et al’ contains a lot of excellent
material, but the exposition is rather lengthy and hard to
follow. Furthermore, since most of the work was completed
around 1959, the book is somewhat outdated. It includes a
good treatment of the detailed material and energy balances
for each tray, including the flow dynamics, but discusses
only briefly the overall response of the column. The
discussion on control configuration selection is interesting,
but somewhat outdated. The books by Shinskey*® on
distillation control contain many excellent practical recom-
mendations which reflect the authors vast experience in the
field. There is a detailed treatment on the issue of
composition control and various configuration alternatives.
However, the explanations are often lacking or difficult to
follow. Buckley er al.’ give a detailed discussion of the
design of level and pressure control systems, but the issue of
composition control (configuration selection) is only briefly
discussed. There is a lot of good material in the book based
on the extensive experience of Page Buckley, but it could be
argued that the book was published about 20 years too late.
The book by Kister’ concentrates on distillation operation,
and has a wealth of practical recommendations. The book
has a good discussion on one-point composition control,
level- and pressure control, and on location of temperature
sensors. Finally, Luyben?® has edited a book with many good
contributions from the most well-known authors in the field
of distillation dynamics and control. However, being a
collection of stand-alone papers, it is not really suitable as
an introductory text.

A typical two-product distillation column is shown in
Figure 1. The most important notation is summarized in
Table 1 and the column data for the examples are given in
Table 2. We use index i to denote the stage number, and we
number the stages from the bottom (i =1) to the top
(i = N,,,) of the column. Index B denotes bottom product
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Figure 1. Typical simple distillation column controlled with LV-
configuration.

and D distillate product. We use index j to denote the
components; j = L refers to the light component, and j = H
to the heavy component. Often there is no component index,
then this usually refers to the light component.

2 FUNDAMENTALS OF STEADY-STATE
BEHAVIOUR

The basis for understanding the dynamic and control
properties of distillation columns, is to have a good
appreciation of its steady-state behaviour.

It is established that the steady-state behaviour of most
real distillation columns, both trayed and packed columns,
can be modelled well using a staged equilibrium model.*
The critical factor is usually to obtain a good description of
the vapour-liquid equilibrium. For an existing column, one
usually adjusts the number of theoretical stages in each
section to match the observed product purities and
temperature profile. Tray efficiencies are sometimes used,
especially if the number of theoretical stages is small, and
we cannot achieve good agreement with an integer number.

To describe the degree of separation between two
components in a column or in a column section, we introduce
the separation factor

— (xf-'!xa‘-" ) top
(xf . "xf l ) bim

where here L denotes light component, H heavy component,
top denotes the top of the section, and btm the bottom. We
will present short-cut formulas for estimating S below.

In this paper, we want to develop insight into the typical
behaviour of distillation columns. For this reasons we will
make two simplifying assumptions.

)

1. Constant relative volatility. In this case the vapour-liquid

equilibrium between any two components is given by
o= /X, _ Y/
YalXy X /%y

2

* There are exceptions, especially if chemical reactions taking place; for
more details see e.g. the work of Taylor et al.*!® on nonequilibrium models.

Table 1. Notation.

F feed rate [kmol/min]

Zr feed composition [mole fraction]

qr fraction of liquid in feed (1 in all examples shown)

D and B distillate (top) and bottoms product flowrate {kmol/min]

xp, and x, distillate and bottom product composition (usually of
light component) [mole fraction]

L=L; =Ly, reflux flow [kmol/min]

V=V,=V, boilup flow [kmol/min]

N no. of theoretical stages including reboiler

N,=N+1 total number of stages (including total condenser)

i stage no. (1 =bottom. N,-feed stage)

Liand V, liquid and vapour flow from stage i [kmol/min]

x; and y; liquid and vapour composition on stage i (usually of light
component) [mole fraction]

M; liquid holdup on stage i [kmol] (M, - reboiler, M), -
condenser holdup)

@ relative volatility between light and heavy component

T time constant for liquid flow dynamics on each stage
[min]

8, = (W —1)7, time ‘delay’ for change in reflux to reach reboiler [min]

A constant for effect of vapour flow on liquid flow

(‘K2-effect’)

where « is independent of composition (and usually also of
pressure). This assumption holds well for the separation of
similar components, for example, for alcohols or for
hydrocarbons. Obviously, this assumption does not hold
for non-ideal mixtures such as azeotropes. For a binary
mixture (2) yields

A=y _ ox
*=a-n = YT i4@-1x

2. Constant molar flows. In this case the molar flows of
liquid and vapor along the column do not change from one
stage to the next, that is, if there is no feed or product
removal between stages [ and i + 1, then at steady-state

Li=Ly; Vi=Vy )
Again, this assumption usually holds well for similar

components if their heats of vaporization do not differ too
much.

&)

We will also assume in most cases that the feed mixture is
binary, although many of the expressions apply to multi-
component mixtures if we consider a pseudo-binary mixture
between the two key components to be separated.

Estimating the relative volatility. For an ideal mixture
where Raoults law applies, we can estimate the relative
volatility from the boiling point difference. We havey
AH" ATy

RT; T,

where AT, = Ty, — Ty, is  boiling point  difference,
Ty = /Ty Tpy is the geometric average boiling tempera-
ture, and AH"? is the heat of vaporization which is assumed
constant. The factor (AH**)/(RT}) is typically about 13.

For example, for methanol (L)-n-propanol (H), we
have Ty =337.8K, Tgy = 370.4K, and the heats of
vaporization at their boilings points are 35.3 kJ/mol and

Ino =

)

t Raoults law gives y/x; = pj"/p and we have a = (y./x,)/(ulxy) =
pipE where pi#(T) and /pi(T) are evaluated at the same temperature 7.
From The Clausius-Claperyon equation we have that pi(Tsy) =
Ty yexp (—(AH*")R(1/(Tgy — UTy). Then o= pp*(Tep)pi' (Ton)
and using py(Ty,) = pi(Tyy) = 1 atm, we derive (5).
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Table 2. Column data.*

N Ny N F e qr o D L v Xp X M; 7L
Column A 40 41 21 1 0.5 1 1.5 0.5 2.706 3.206 0.99 0.01 0.5 0.063
3-stage column 2 3 2 1 0.5 1 10 0.5 3.05 3.55 0.9 0.1 1.0 0

* For both columns A = 0. The nominal liquid holdup M; on all N,,, stages is assumed to be the same (including the reboiler and condenser); in practice the

reboiler and condenser holdups, M, and My, are usually much larger.

41.8 kJ/mol, respectively. We use AH"*? = 1/35.3-41.8 =

38.4 kl/mol, T = +/337.8:370.4 =353.7 K and AT, =
32.6 K. This gives (AH"")/(RTg) = 13.1 and we find
o = 3.33, which is a bit lower than the experimental value
because the mixture is not quite ideal.

As an another example, consider a mixture with o =1.5
and T, = 350K. Then (7), with (AH"P)/(RT ) = 13, gives
AT, = 10.7 K, which will be the temperature difference
across the column if we separate a binary mixture into its
pure components (neglecting the pressure drop).

2.1 Column Design

To increase the separation (factor) we can either increase
the number of stages in the column or we can increase the
energy usage (i.e. the reflux). To quantify this trade-off, we
usually consider the two extreme cases of (i) infinite reflux,
which gives the minimum number of stages (N,,;,), and (ii)
infinite number of stages, which gives the minimum energy
usage (Q,,;, = V,.,AH"?). Typically, we select the number
of theoretical stages N in the column as N = 2N,,,,, which
gives a corresponding boilup rate V of about 1.2V, ,,. From
the expressions for N, and V,,,, given in equations (8) and
(11)—(12), we see that the most important parameter is the
relative volatility . For example, as « is decreased from 2
to 1.1, we find that the required number of stages N
increases by a factor of about 7, and the energy usage (i.e.
V) increases by a factor of about 10. In practice, distillation
becomes uneconomical for mixtures with « less than about
1.1, corresponding to a boiling point difference of less than
about 2 K.

2.1.1 Minimum number of stages (infinite reflux)

With infinite internal flows, L; and V,, a material balance
across any part of the column gives V, = L, and similarly
a material balance for any component gives Viy, = L, x;, .
Thus, y; = x;,,, and with constant relative volatility we have

— yL,i/yH,i _ xL,i+1/xH,i+1 (6)

Xyl Xg; Xy, il X

For a column or column section with N stages, repeated use
of (6) gives Fenske’s formula for the overall separation
factor

— (XJIH )mp — N

(xr." ~‘~'H) bim

O]

For a column with a given separation, this yields Fenske’s
formula for the minimum number of stages

N, =InS/Ina 8)

Note that a high-purity separation (S is large) requires a
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large number of stages, although the increase is only
proportional to the logarithm of separation factor. Expres-
sions (7) and (8) do not assume constant molar flows and
apply to the separation between any two components with
constant relative volatility.

2.1.2 Minimum energy usage (infinite no. of stages)

With an infinite number of stages, we can reduce the
reflux (i.e. the energy consumption) until a pinch zone
occurs somewhere inside the column. For a binary
separation this will usually occur at the feed stage (where
the material balance line and the equilibrium line will meet),
and we can easily derive an expression for the minimum
reflux. For saturated liguid feed (e.g. King?, p. 447):

_ 42— dha

L
a—1

'min

F ®

where ¢ = Dx,,/Fz;,; is the recovery fraction of light
component, and ¢ of heavy component, both in the
distillate. The result depends relatively weakly on the
product purity, and for sharp separations (¢? = 1, ¢ = 0)
we get L, = F/(a —1). Actually, (11) applies without
stipulating constant molar flows or constant o, but then L,
is the liquid flow entering the feed stage from above, and «
is the relative volatility at feed conditions. A similar
expression, but in terms of V,,,, entering the feed stage from
below, applies for a saturated vapour feed (King?):
B B
Vo = P08 (10)
a—1
where ¢” is the recovery in the bottom product. For sharp
separations with ¢5 =1 and ¢ =0 we get V,, =
F/(ot — 1). In summary, for a binary mixture with constant
molar flows and constant relative volatility, the minimum

boilup V,,, for sharp separations is:
1
Feed liquid : V,,, =—1F +D an
o —
1
Feed vapour: V,,, =-_1 F (12)
o —

Note that V,,;, is independent of the product purity for sharp
separations. From this we establish one of the key properties
of distillation: We can achieve any product purity (even
‘infinite separation factor’) with finite energy (as long as the
boilup V is higher than V,,) by increasing the number of
stages.*

The expressions in (9)—(12) also apply to multicomponent

* Obviously this statement does not apply to azeotropic mixtures (for which
o« =1 for some composition), but we can get arbitrarily close to the
azeotropic composition, and useful results may be obtained in some cases
by treating the azeotrope as a pseudo-component and using o for this
pseudo-separation.
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mixtures if the non-key components lie between the key
components (L and H) in boiling point and distribute to both
products in the ‘preferred” way with respect to minimum
boilup. The reason is that the pinch then occurs at the feed
stage. In general, the values computed by the above equations
give a (conservative) upper bound when applied directly to
multicomponent mixtures (King?, p. 452).

2.1.3 Finite number of stages and finite reflux

Fenske’s formula S = o applies to infinite reflux. At an
earlier Distillation and Absorption symp in Brighton in
1987, we proposed a nice generalization to the case with
finite reflux!2**

LV

=% vy (13

Here Ny is the number of stages in the top section and Ny in
the bottom section, and

Ly = Ly + g¢F; Vr=Vp+ (1 —gpF (14)

where g is the fraction of liquid in the feed. The main
assumptions behind (13) is that we have constant relative
volatility, constant molar flows, that there is no pinch zone
around the feed, and that the feed is optimally located. It
should be stressed that even when these assumptions hold,
(13) is only an approximation. The shortcut formula (13) is
somewhat misleading since it suggests that the separation
may always be improved by transferring stages from the
bottom to the top section if (L/V); > (V/L)s. This is not
generally true and also violates the assumption of having the
feed is optimally located, so to avoid this problem we may
follow Jafarey et al.”® (1979) and choose Ny = Nj = N/2, to
derive

N2
=o [(L/V)T] (15)

(LIV)g

The shortcut formulas in (13) and (15) are very similar to
expressions given by Jafarey et al.” which have been
adopted by Shinskey®. They give similar results, but (13)
and (15) are esthetically much nicer and easier to remember.

Formulas (13) and (15) give the correct limiting value
§ = o, for infinite reflux, but at finite reflux they usually
overestimate the value of S (at least for cases where the
feed stage is optimal). For example, (15) says that the
minimum reflux (corresponding to N = o) is obtained with
ALV JI[(LIV)5) = 1, and for a liquid feed we derive
L,, = Fl(o — 1), which is smaller than the correct value of
L,,;,, = Fl(a — 1)in(9) forasharp separation. The factthat (13)
and (15) are poor close to minimum reflux is not surprising,
since we then have a pinch zone around the feed stage.

The short-cut formula (15) has proven itself useful for
estimating the number of stages for use in column design,
and also for estimating the effect of changes in internal
flows in column operation''?. However, for us the main
value of (15) is the insight it provides. First we see, as
already stated, that the best way to increase S is to increase
the number of stages. Second, during operations where N is

fixed, (15) provides us with the important insight that the
separation factor § is increased by increasing the internal
flows (L and V), thereby making L/V closer to 1.

The separation factor also depends on the external flows
(D and B), but in practice only small variations in these
flows are allowed (since we must keep D/F close to zp to
achieve high purity; see below) and thus we can, for most
practical purposes, assume that S remains constant when we
change the external flows. Shinskey**!* has used this insight
to derive several useful results.

2.2 Logarithmic Compositions

Distillation columns are known to be strongly nonlinear,
that is, the effect of changes depends strongly on the
magnitude of the change and on the operating point. The
primary reason for this is the nonlinear VLE, e.g. see (3).

However, it turns out that the behaviour, both at steady-
state and especially dynamically, see section 5.3, is much
less dependent on operating point if we instead consider the
logarithmic composition defined as the logarithm between
the ratio of the key components,

X = In(x;/xy) 16)

Similarly, if we have a temperature measurement T, we may
use the logarithmic temperature defined as'®

TH,ref -T
T- TL,ref

where T} ¢ is the boiling point of light component (or some
reference temperature near the top), and Ty is the boiling
point of the heavy component (or some reference tempera-
ture near the bottom). Usually we have X =~ T"%.

Note that Fenske’s formula (7) for total reflux in a column
or column section, becomes in terms of logarithmic
compositions

X, — Xym =Na

top

T =In a7n

(18)

That is, the logarithmic composition increases approxi-
mately linearly with the number of stages.* This is
illustrated in Figure 2, which shows composition profiles
for column A. We note that the profile in terms of
logarithmic compositions (right plot) is close to linear,
especially near the column ends.

Another reason for using logarithmic composition is that
it approximately gives the change divided by the impurity
concentration (the ‘relative’ change), which is usually more
reasonable to consider from a practical point of view. To see
this, note that, if the sum of key components is constant i.e.
dx, = —dxy (e.g. for a binary mixture), then a differentia-
tion of (16) gives

Xy + Xy
XXy

dX =

dxy, (19)

Thus, for sharp separations of a binary mixture, we get for
the logarithmic product compositions
dxpy, .

dXD ~ : d.XB ~ de.L

XpH Xp.L

(20)

% The paper with the derivation and discussion of (13) appeared in my
PhD thesis in 1987, but was otherwise unpublished, but it is now available
as an internal report over the internet'!. A simple way to derive (13) is by
repeated use of (68) and (69).

* Actually, a plot of X; as a function of the stage location i is frequently
used in design to pinpoint a poorly located feed for multicomponent
separations; we want this plot to be as straight as possible, also around the
feed point.
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Figure 2. Composition profiles for column A. Right plot: logarithmic compositions. (Change in external flows: AL = ~AD = 0.02 with AV = 0; Change in

internal flows: AL = AV = 1).

2.3 Internal and External Flows

We are now ready to discuss one of the key aspects of
distillation operation and control; namely the difference
between internal and external flows.

Consider first the following simple example, which

illustrates that changes in external flows (D/F and B/F)
usually have large effects on the compositions.
Example. Consider a column with z;=0.5, x, = 0.99,
x3 = 0.01 (all these refer to the mole fraction of light
component) and D/F = B/F = 0.5. To simplify the discus-
sion set F' = 1 [kmol/min]. Now consider a 20% increase in
the distillate D from 0.50 to 0.6 [kmol/min]. This will have a
drastic effect on composition. Since the total amount of light
component available in the feed is z,F = 0.5 [kmol/min], at
least 0.1 [kmol/min] of the distillate must now be heavy
component, so the amount mole faction of light component
is now at best 0.5/0.6 = 0.833. In other words, the amount of
heavy component in the distillate will increase at least by a
factor of 16.7 (from 1% to 16.7%).

Thus, we generally have that a change in external flows
(D/F and B/F) has a large effect on composition, at least for
sharp splits, because any significant deviation in D/F from
zp implies large changes in composition.

On the other hand, the effect of changes in the internal
flows are much smaller. For example, for column A the
steady-state effect on product compositions, x;, and xg, of a
small increase in external flows (e.g. AL = —AD = (0.001)
is about 100 times larger than the effect of corresponding
change in the the internal flows (e.g. AL = AV = 0.001
with D constant). In general, the ratio between the effect of
small changes in the external and internal flows is large
if the ‘impurity sum’ I, = Bxy(1 — x3) + Dx,(1 — xp) is
small (see (88) in Appendix), and such columns then have
a large condition number for the gain matrix (they are
‘ill-conditioned’).

To further illustrate the difference between changes in
external and internal flows, consider the composition stage
profiles in Figure 2, where the solid line is for the nominal
operating point. The result of a 4% decrease in the distillate
flow (AL = —AD = 0.02 with V constant) is shown by the
dashed-dot curve. We see that the effect of this change in
external flows is to move the entire stage composition
profile, so that the column now contains a lot more light
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component. This results in a less pure bottom product (with
more light component) and a purer top product (with more
light component). On the other hand, a 50 times larger
increase in the intermal flows (AL=AV =1 with D
constant; the dashed line) has a smaller effect. It changes
the slope of the curve and makes both products purer. In this
case, light component is shifted internally from the bottom
to the top part of the column, but the overall amount of light
component inside the column remains almost unchanged.

In any case, the conclusion is that changes in external
flows have large effects on the compositions, and makes one
product purer and the other less pure. The opposite is true
for changes in the internal flows. There are also fundamental
differences between external and internal flow changes
when it comes to the dynamic response; the external flow
changes are associated with the ‘slow’ dominant time
constant of the column, whereas the dynamic effect of
internal flow changes may be significantly faster. This may
be explained by the fact that we need to change the overall
holdups of each component in the column when we make
changes in the external flows, and this takes time.

2.4 Configurations and the Gain Matrix

From a control point of view, a two-product distillation
column with a given feed, has five degrees of freedom (five
flows which can be adjusted; L, V, V;, D and B). At steady
state, the assumption of constant pressure and perfect level
control in the condenser and reboiler, reduces the number of
degrees of freedom to two. These two degrees of freedom
can then be used to control the two product compositions, x,,
and x (or some other indicator of the composition, like the
tray temperature).

The effect of small changes in the two remaining degrees
of freedom can be obtained by linearizing the model. For
example, with the ‘LV-configuration’ we have L and V as
the degrees of freedom (independent variables), and we can
write at steady-state*

dxp = g;dL + g,,dV (21)

* This model is on differential form, i.e. in terms of deviation variables. To
simplify notation we often replace dxp, by simply xp,, etc., and write (21) as
xp =gnL+g,V, etc.
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dxg = gydL + gdV (22)

where g,, = (9x,/dL)y represents the effect (the steady-state
gain) of a small change in L on x;, with V constant, etc. In
matrix form we write

dxp LV(dL> LV (811 812>
=G ;. G = 23
<dx3> dav 821 8 23)

Similarly, for the DV-configuration, with D and V as
independent variables (in operation, we would need to
change the condenser level control in Figure 1 from using D
to using L), we have

dx dD
() =" () @

In fact, there are infinitely many combinations of the five
‘original’ flows which could be used as independent
variables, and in particular, ratios are frequently used. In
particular, the double ratio configuration with L/D and V/B
as independent variables,

de __ ~(DYVIB) dL/ D
<de> =C dv/B @3)

has many attractive features. As mentioned, the steady-state
gains in any of these models can be easily obtained by
linearizing a model of the column, for example, we can use
the simplified separation factor model in (15), see e.g. the
gain expressions in (88)—(90). However, usually we prefer
to linearize the equations of the exact nonlinear model, as
this also gives easily a dynamic model; see sections 3 and 4.

The control properties of the various configurations may
be drastically different, and this is exemplified by studying
the the steady-state two-way interactions, as expressed by
the relative gain array (RGA). The relative gain \; expresses
how the gain g, changes as we close the other loop(s). For
example, consider the effect of a change in L on x;, with the
LV-configuration. With no control V is constant (dV = 0),
and the effect is dx,, = g,,dL; see (22). Now assume that we
introduce feedback control in the other loop, i.e. we adjust V
to keep x constant. From (23) with dx; = 0 this is achieved
with dV = —(g,,/g,,)dL. This change in V also affects x;, so
substitute it into (22) to get dip = (g1 — £12(821/82))dL.
Thus, the corresponding relative gain is

% _ 811
dip g — 812(8u/8xn)
Similar expressions apply to the other relative gains. In fact,

the rows and the columns in the RGA always sum to 1, so
we have the following RGA-matrix

A A A 1—A
A: 11 12 — 11 11 27
(xu xn) <1—xu A ) @7)

Generally, we prefer to ‘pair on’ RGA-elements close to 1.
For example, if we intend to use L to control x;, then we
would like that the effect of L on x,, does not depend on the
control of x,, that is, we would like A, close to 1. Large
RGA-elements (say, larger than 10) generally imply serious
control problems.*

Approximate steady-state gains for any configurations

Ay = (26)

* Note, we are here considering the RGA at steady-state, whereas it is
really the RGA-value at the frequency corresponding to the closed loop
response time which is important for control.

can be obtained from the simplified separation factor model
in (16). In fact, we can derive the following useful
approximations for the steady-state RGA for the three
configurations mentioned above (set F=1 and assume feed
liquid):

Q/IN)L(L+ 1)

LV
MG~ BB (28)
A (G~ 1/<1 +D—(1;xi)> (Shinskey') (29)
Bx,
)\11((;([/D)(V/B))z )\II(GLV)/<1 +%+%> (30)

We find that the RGA-elements for the LV-configuration**
are always large for sharp separations where both products
are pure. On the other hand, for the DV-configuration the
RGA-elements are always between 0 and 1; we see from
(29) that \,, is close to 1 for columns with a pure bottom
product and close to 0 for a column with a pure top product.
For the (L/D)(V/B)-configuration the RGA is reduced
relative to the LV-configuration when the internal flows
are large, which is typically the case for close-boiling
mixtures with « close to 1.

Example. Column A. The exact steady-state gain matrices
and corresponding RGA for the three configurations
mentioned above aret:

L, (08754 —038618
=\ 1osas _10082) M=o OD
., (08754 001365
_ N = 0.45(32)
—1.0846 —0.01365
0.03754 —0.03072
GEPXVB _ N = 3.29 (33)
0.03887 —0.04570

These RGA-values compare well with the approximations
in (28), (29) and (30), which give RGA-values of 50.1, 0.5
and 3.62, respectively.

The gain matrices given above are clearly related. For
example, for the case of constant molar flows we have at
steady-state that dD = —dL + dV, and it follows that

G = (‘01 i)c” (34)

However, if we do not assume constant molar flows and for
the dynamic case, transformations such as (34) get rather
complicated. Therefore, instead of using transformations, it
is recommended to start from an ‘uncontrolled’ dynamic
model (5x5), and then close the appropriate level and
pressure loops to derive the model for the configuration
under consideration.

Dynamics. We have here discussed the steady-state
behaviour, which is not by itself too important for control.
One good illustration is the DB-configuration,

dxp __ DB dD
(5)-o"0(8)

** The estimate of the RGA for the LV-configuration in (28) is half of the
estimate of the condition number vy given in (92).

+ The outputs are in mole fractions units. Note that no scalings have been
applied as one would normally do for a control analysis.
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with D and B as independent variables for composition
control. At steady-state (ats = 0) wehave D+ B = F,so D
and B cannot be adjusted independently. This originally led
most distillation experts to label the DB-configuration as
‘impossible’. An analysis shows that at steady-state all
elements in GP2(0) are infinite and also its RGA-elements
are infinite. Again, this indicates that control with the DB-
configuration is impossible. However, by considering the
dynamics, one finds that control is in fact possible, because
D and B can be adjusted independently dynamically.
Furthermore, the RGA approaches unity at relatively low
frequencies, especially for columns with large internal
flows’s. This is discussed in more detail later, e.g. see
Figure 11.

3 A SIMPLE EXAMPLE (3-STAGE COLUMN)

Some important aspects of modelling, and in particular of
the energy balance, are considered in the survey paper by
Skogestad’. Here, we want to illustrate, by way of a simple
column with only three stages, the fundamentals of dynamic
modeling, simulation and linearization.

We assume binary separation, constant pressure and
negligible vapour holdup, perfect control of levels using D
and B (LV-configuration), constant molar flows (which
replace the energy balance), vapour-liquid equilibrium on
all stages, constant relative volatility for the VLE, and
constant liquid holdup (i.e. neglect flow dynamics). With
these assumptions the only states are the mole fraction x; of
light component on each stage.

The column data are summarized in Table 2. The column
separates a binary mixture with a relative volatility « = 10,
and has two theoretical stages (N =2) plus a total
condenser. Stage 3 is the total condenser, the liquid feed
enters on stage 2, and stage 1 is the reboiler. With these data
the steady-state column profile becomes

Stage i L, V; X i
Condenser 3 3.05 0.9000

Feed stage 2 4.05 3.55 0.4737 0.9000
Reboiler 1 3.55 0.1000 0.5263

We now want to:

1. Formulate the dynamic equations for the composition
response with L and V as independent variables (LV-
configuration).

2. Linearize the equations and write them on the form
dx/dt = AAx 4+ BAu + EAd where Ax, Au and Ad represent
small deviations from the steady-state.

3. Obtain from the linearized model the steady-state gains.
4. Simulate the dynamic response and compare with the
eigenvalues computed from the linear model.

(1) The material balances for the light component on each
stage are:

dx.
M, d_: = V,y, — Lsx, — Dx, (condenser) (36)
dx
M, d_t2 =Fzz +Viy, + Lix,
— Voy, — Lyx, (feed stage) 37
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Ml% = Lyx, — Viy;, — Bx,
where by definition V = V, and L = L,. With the assump-
tions above the flow responses are decoupled from the
composition dynamics and we have at any given time:

V,=V, L,=L+F,
D=V—-L B=L+F-V (39)

(the last two equations follow because D and B are used for
perfect level control).

(2) Linearizing the material balance for the condenser (stage
(3) yields after a little work

(reboiler) (38)

dx
My = V(Ay, = Ax;) + 0, = x)AV (40)

Here the last term is zero because y, = x, at steady-state for
a total condenser. By linearizing the VLE on each stage we
have Ay/Ax; = K], where for the case of constant relative
volatility K; = /(1 + (o — 1)x;)%. The component balances
for the other stages may be linearized in similar manner, and
we obtain the linear model

M,.i—)::AAx+BAu+EAf 4D
o) w() = (l)
= X N = ) =
X ) u y .
X1
where
-V VK, 0
A=| L —UL+F+VK) VK,
\ 0 L+F —(ByK))
—-3.550 1.282 0
= 3.050 —5.332 9.834
0 4.050 —10.334
[ 0 0
B=|x—-x M~ N
X—x ——x)
0 0
= | 04263 —0.3737
0.3737 —0.4263
0 0 0 0
E=\|zz—x, F|=1]0023 1
X —x 0 0.3737 0O

The overall dynamic transfer matrix G(s) which gives the
effect of L, V, F, z; on x5, x,,x, is given by

Gs)=(sI —A)7'[B E] 43)

The eigenvalues of the state matrix A are —0.22, —4.26 and
—14.7 [min!]. Note that the inverse of the smallest
eigenvalue magnitude is 1/0.22 = 4.5 min.
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Note that all the elements in the first row of B and E are all
zero. This implies the changes in L,V,F or z; have no
immediate effect on top composition. The reason is of
course that x, =y, at steady-state because of the total
condenser. However, as shown next, this does not mean that
the steady-state effect is zero, because there are interactions
with the other stages.

(3) Steady-state gains. The overall steady-state gain matrix
(s = 0) for the effect of all independent variables on all
compositions (states) is

G= —A'[B E]

0.750 -0.748 0.366 0.959
=1 208 -—-207 101 265 (44)
0.850 —0.853 0433 104

Usually, we are only interested in the product compositions
and we write

dx,, LV(dL) LV(dF)
= 4
<de) G av )t G dz, “3)

v (0.750 —0.748
~\0850 -0853)°
i 0.366 0.959
LV (46)
0.433 1.04

The RGA of G~ is 163.5 (which compares well with the
value 3.05-4.05/0.1 = 123.5 obtained from the shortcut
formula (29)). The column is thus expected to be difficult to
control, which is rather surprising for a column with such
low purity. However, this is actually an unrealistic design
with too few stages in the column. If we increase the number
of theoretical stages from 2 to 3, then L drops from 3.05 to
0.095, and the RGA drops from 163.5 to 1.94.

(4) Dynamic response. A mnonlinear simulation of an
increase of z; of 0.01, using the program MATLAB, is
shown in Figure 3. We note that the dominant time constant
(time it takes for the compositions to reach 63% of their
steady-state change) is about 4.5 min as expected from the
smallest eigenvalue magnitude of the A-matrix. We also
note that the composition change inside the column is
significantly larger than at the columns ends. This is typical

0.03 ) .
Az(t) (FEED)
0.025 e |
T
o ’1
k= ,
38 L
g, o01sf A
5 ] Azy(t) (BT™M)
© oof it oo,
. - Axzs(t) (TOP)
0.008 !’ )“",
[ ’."
o :' . i " N :
) 45 10 ] 15 20 25
Time [min]

Figure 3. Composition response for 3-stage column to change in feed
composition.

MATLAB call for 3-stage column:

x0 = [0.9; 0.4737; 0.1];
[t, x]= ode45(‘dist*, 0, 25, x0, le-6, 1);

dist.m (MATLAB subroutine):

function yprime=dist(t,x);

a=10,

y(3)=x(3),
y(2)=a*x(2)/(1+(a-1)*x(2));
y(D=a*x(1)/(1+-1)*x(1));

13 = 3.05;

12 = 4.05;

v2 = 3.55;

vl = 3.55;

b=0.5;

d=05;

f=1,

zf=0.51; % Step in z5 from 0.5 to 0.51

dx3dt = v2*y(2)-13*x(3)-d*x(3);
dx2dt = Frzf4vI*y(1)+H3*x(3)-v2*y(2)-12%x(2);
dx1dt = 12*x(2)-v1*y(1)-b*x(1);

yprime=[dx3dt;dx2dt;dx1dt];

for a change which upsets the external material balances,
and is actually the primary reason for the large time
constants which are often observed for distillation columns.

The model in this example did not include liquid flow
dynamics, which generally are important if the model is
used for control studies. In the next example, we consider a
more realistic column example (‘column A’) where we also
include liquid flow dynamics.

4 A MORE REALISTIC EXAMPLE (COLUMN A)

In this section we consider ‘column A’ studied by
Skogestad and Morari'”. Details about the model and all the
MATLARB files are available over the internet.

The following assumptions are used: Binary separation,
constant pressure and negligible vapour holdup, total
condenser, constant molar flows, equilibrium on all stages
with constant relative volatility, and linearized liquid flow
dynamics. These assumptions may seem restrictive, but they
capture the main effects important for dynamics and control
(except possibly for the assumption about constant pressure).

4.1 The Model

The model is given by the MATLAB code in Table 3. The
states are the mole fractions of light component, x; and the
liquid holdup, M;,—a total of 2N, states.

Note that we do not assume constant holdup on the stages,
that is, we include liquid flow dynamics. Specifically, we use
the following linearized relationship (we may alternatively
use Francis’ Weir formula etc.):

L= Lo+ M, — Myt + (Vi — VoA 47)
where L, [kmol/min] and M,; [kmol] are the nominal values
for the liquid flow and holdup on stage i.

This means that it takes some time, about 8, =
(N = )7, = 39-0.063 = 2.46 [min] (see Figure 4), from
when we change the liquid in the top of the column (L)
until the liquid flow into the reboiler (L) changes. This is
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Table 3. Part of MATLAB code of dynamic distillation model.

% Vapour-liquid equilibria
i=1:NT-1;  y(i)=alpha*x(i)./1+(alpha-1) *x(i));

% Vapor Flows assuming constant molar flows
i=1:NT-1; V(i)=VB*ones(1,NT-1);
i=NF;NT-1; V()=V() + (1-gF) *F;

% Liquid flows assuming linearized tray hydraulics with time constant taul
% Also includes coefficient lambda for effect of vapor flow (* ‘K2-effect’”).
i=2:NF; L(i) = LOb + (M(1)-M0(1))./taul + lambda.*(V(i-1)-V0);
i=NF+1:NT-1; L(i) =LO0 + (M(i)-M0(i))./taul + lambda.*(V(i-1)-VOt);
L(NT)=LT;

% Time derivatives from material balances for
% 1) total holdup and 2) component holdup

% Column

i=2:NT-1;

dMdt(i) = L{i+1) -L(3) + V(i-1) -V();
dMxdt(i) = LA+1).*x(i+1) - L{).*x@) + V(E-1).*y@-1) - V(). *y();

% Correction for feed at the feed stage

% The feed is assumed to be mixed into the feed stage
dMdt (NF) = dMduNF) +F;

dMxdt (NF) = dMxdt (NF) + F*zF;

% Reboiler (assumed to be an equilibrium stage)
dMdi(1) =L(2) - V(1) -B;
dMxdt(1) = L(2)*x(2) - V(1)*y(1) - B*x(1);

% Total condenser (no equilibrium stage)
dMdt(NT) = V(NT-1) -LT -D;
dMxdi(NT) = VINT-1)*y(NT-1) - LT*x(NT) - D*x(NT);

% Compute the derivative for the mole fractions from dMx) = x dM + M dx
i=1:NT;
dxdt(i) = (dMxdt() - x(1).*dMdt@) )./M();

% Output
xprime=[dxdt’;dMdt'];

good for control as it means that the initial (‘high-
frequency’) response is decoupled. This means that if we
have sufficiently fast control, then we can avoid some of the
strong interactions that exist at steady-state between the
compositions at the top and bottom of the column.

The vapour flow into the stage may also effect the liquid
holdup as given by the parameter A (sometimes denoted the
K,-effect). A positive value of A may result if an increase in
vapour flow gives more bubbles and thus pushes liquid off
the stage. For A > 1 we get an inverse response in the reboiler
holdup M in response to an increase in boilup V, and we also
get an inverse response in the bottom composition. This
makes it difficult to use V for single-loop control. For tray
columns, N may also be negative if the increased pressure
drop caused by larger V results in a larger holdup in the
downcomers. In general, it is difficult to estimate A for tray
columns. For packed columns A is usually close to zero. In all
examples in this paper we use A = 0.

4.2 Steady-State Operating Point

The steady-state data for column A are summarized in
Table 2, and composition stage profiles are shown in
Figure 2. The steady-state gain matrices for the LV-, DV-
and (L/D)(V/B)-configurations were given in (31)—(33).

4.3 Dynamic Responses
We first consider the dynamic response using the

Trans IChemE, Vol 75, Part A, September 1997

0.25

0.2

0.15

0.1}

0.05

Change in liquid flow, i.e. AL;

'0‘051 0 1

2 3 4
Time [min]

Figure 4. Liquid flow dynamics for column A.

LV-configuration, that is, with reflux L and boilup V
as independent variables for composition control and
with D and B adjusted to obtain tight level control,
see Figure 1.

The responses are very similar to those of the uncon-
trolled ‘4 x4 model’, which may be generated using the
MATLAB files available over the internet.

External flows

Small changes in the external flows have large effects on
the product compositions. This is illustrated in Figure 5
(upper curves) where we have increased the reflux L by
0.0027 (about 0.1%) with constant V, i.e., we have
decreased D from 0.5 to 0.4973. At steady-state, x,
increases from 0.99 to about 0.992 and x; increases from
0.01 to about 0.0135. The response is rather sluggish with a
time constant of about 194 minutes. Similarly, if we
increase the boilup V by the the same amount, but
now with constant L, i.e. we increase D from 0.5 to
0.5027, then the effect on composition is almost the same,
but in opposite direction (see the lower part of the plot in
Figure 5).

In fact, the same dynamic response with a long time
constant of about 194 min, is observed for any small change
which upsets the the external material balances, including
changes in F and z.

Internal flows

Next, consider a change in the internal flows. More
specifically, in Figure 6 we simultaneously increase L and V
by 0.27 (about 10%), such that D and B are kept constant (at
least at steady-state). From the simulation of the individual
changes in Figure 5, we expect that the changes in L and V
will counteract each other, and this is confirmed by the the
simulations in Figure 6. We observe from the plots that the
effect on product compositions of a given change in L is
now about 100 times smaller. This also agrees with the
steady-state gains given in (31). However, there are also two
other differences: First, both products get purer in this case,
and, second, the dynamics are much faster.

To understand better the dynamic response to changes in
internal flows, let us consider the case, admittedly
unrealistic, where we neglect the liquid flow dynamics.
The corresponding response is given by the dotted lines in
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Figure 5. External flows changes: 0.1% individual increases in L and V.
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Figure 6. Internal flows change: 10% simultaneous increase in L and V with
D constant.

Figure 6, and we see that it is close to first-order with a time
constant of about 15 min. Note that, in this case, the change
in reflux flow L; immediately results in a corresponding
change in liquid flow entering the reboiler Lj. Next,
consider the actual response with liquid flow dynamics
included (solid and dashed lines in Figure 6), for which it
takes some time (about 2.54 min) for the change in reflux
to reach the reboiler. During this time period the bottom
part of the column only ‘feels’ the change in boilup, so the
bottom composition x, drops very sharply, as for a change
in the external flows. But, then the reflux flow reaches the
bottom, and this counteracts the increase in the boilup, and
the bottom composition levels off. In the top of the
column, we see less of this behaviour since we have
assumed immediate response for the vapour flow (which is
quite reasonable).

4.4 Linearized Model

The model may be linearized as illustrated above for the
3-stage column, but we here we used numerical differentia-
tion. To check the linearized model we compute the
eigenvalues of the A-matrix, and we find that the three

eigenvalues furthest to the right are —0.00516, —0.0830 and
—0.2851, and the corresponding time constants (take the
inverse) are 193.9 min, 12.0 min and 3.5 min. The slowest
mode, with time constant 194 min, corresponds closely to
the time constant observed for changes in external flows,
and the second time constant of 12 min corresponds closely
to that observed for changes in internal flows when flow
dynamics are neglected*.

The main advantage with a linear model is that it is
suitable for analysis (RGA, poles, zeros, CLDG, etc.) and
for controller synthesis. The above linear model has 82
states, but using model reduction the order can easily be
reduced to about 10 states or less without any noticable
difference in the response.

4.5 Nonlinearity

For small changes, the nonlinear and linear models give
the same response, but for large changes the difference is
very large. One simple reason is that x; must always lie
between 0 and 1, so, for example, when we increase L the
top composition x,, can at most increase by 0.01 (from 0.99
to 1.0).

Consider the response in top composition xp, to increases
in L, with V constant. In Figure 7 we compare the linear
response (dashed line) to the nonlinear responses for
changes in L of 0.01%, 0.1%, 10% and 50% (solid lines).
To compare the responses on a equal basis we divide the
change in the composition by the magnitude of the change
in L, i.e., the plot shows Ax,(f)/AL. We show the responses
for a simulation time of 30 minutes, because this is about the
interesting time scale for control. As expected, the response
is very nonlinear, and we observe that Axp(#)/AL is much
smaller for large changes in the reflux.

Next, consider the corresponding responses (right plot) in
terms of logarithmic compositions, i.e., consider AXy(£)/AL
where Xp,(f) = In(x,()/(1 — x,(¢)). This is seen to have an
amazing linearizing effect on the initial response, as the
responses for the first 10 minutes for changes in L from 0%
to 50% are almost indistinguishable. Obviously, this is an
important advantage if a linear controller is to be used.

4.6 Effect of Mass Flows on Response

Throughout this paper we make the implicit assumption that
all flows, L,V,D, B, etc., and all holdups are on a molar
basis, and this assumptions is implicit in most of the
distillation literature. This is the most natural choice from a
modelling point of view. However, in a real column one can,
at least for liquid streams, usually only adjust the mass or
volumetric flows. Therefore, the responses on a real column
will differ from those observed from simulations where
molar flows are fixed. The reason is that a constant mass
flow will result in a change in the corresponding molar flow
when the composition changes. Specifically, we consider

* With constant molar flows, the flow dynamics are unaffected by the
composition dynamics. Thus, the part of the A-matrix belonging to the flow
dynamics is only one-way coupled with the part belonging to the
composition dynamics. It then follows that the eigenvalues belonging to
the composition dynamics are unaffected by the flow dynamics, and vice
versa. However, there is one-way coupling, so the composition response is
affected by the liquid flow dynamics, as seen in Figure 6.
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Figure 7. Nonlinear response in distillate composition for changes in L of 0.1%, 1%, 10% and 50%. Right plot: logarithmic composition.

here the mass reflux L, [kg/min]. We have
L,=LM; M =35x,+40(1 —xp)

where M [kg/kmol] is the mole weight of the distillate, and
we have assumed that the mole weight of the light
component is 35, whereas that of the heavy component is
40. From Figure 8 we see that the responses to a decrease in
zr from 0.50 to 0.495 are very different for the case with
fixed molar reflux, L [kmol/min] (solid lines), and with fixed
mass reflux, L, [kg/min] (dashed lines). In both cases the
molar boilup V [kmol/min] is kept constant.

The importance of using mass flows when studying real
columns seems to have been appreciated only recently'®. In
fact, the use of mass flows may even introduce multiple
steady-states and instability for columns with ideal VLE and
constant molar flows. Jacobsen and Skogestad'® have
derived exact conditions for local instability, and, for our
example, they find that local instability would occur if the
mole weight of light component was reduced from 35 to
28.1 kg/kmol*.

However, note that these effect are caused by composi-
tion changes, and therefore affect only the long-term
response. Therefore, the implications for practical control
may not necessarily be too important.

4.7 Comparison of Various Control Configurations

In this section we want to give some insights in the
difference between various control configurations, more
specifically the LV, DV, LB, DB and (L/D)(V/B)-configura-
tions. We will do this by considering the effect of a feed
flow disturbance, by discussing the effect of level control,
and finally by plotting the dynamic RGA.

4.7.1 Effect of change in feed rate
In Figure 9 we show the response in product composition

* The exact condition for local instability with the L,V configuration given
in Jacobsen and Skogestad'® is that xj, + L(dx,/0L), > My/(My — M,). In
our case x, = 0.99, L = 2,706, (dx,/0L), = 0.8754 and My = 40, and we
find that instability occurs for M, < 28.1 kg/mol. However, if we are in an
operating point (or move towards one) where the bottom product is much
purer than the top product, then (dx,/dL), approaches x,/D =2, see
equation (88), and instability may occur for values of M; around 33 kg/
kmol.
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to a 1% increase in feed rate F from 1 to 1.01 [kmol/min].
The solid line (‘ no level control’) show the response for the
uncontrolled column with all four flows (L, V, D and B)
constant. We compare this response to that with the four
configurations assuming tight (perfect) level control.
However, no composition control is used, so for the LV-
configuration we keep L and V constant (in addition to
constant M,, and M), for the (L/D)(V/B)-configuration we
keep L/D and V/B constant, etc.

LV-configuration. An increased feed rate goes down to the
bottom of the column, and this results, thorough the action
of the bottom level controller, in a corresponding increase in
the bottoms flow. As expected, this upset in the external
material balance a large effect on the product composition,
and in particular the bottom composition drifts quite far
away (from 0.010 to about 0.017).

The LV-configuration (dotted lines) gives almost the
same response as with no level control. This is reasonable,
since with no level control, the increase in F will simply
accumulate in the reboiler, and this by itself does not have a
large effect on the compositions (at least not for x,,, but we
can notice that the change in x, is slightly smaller when
there is no level control). In general, the column composi-
tion response is rather insensitive to actual holdups in the
reboiler and condenser holdups, as long as L and V are
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Figure 8. The use of mass reflux L, may strongly affect the open-loop
response. The plot shows the response when z, is decreased from 0.5 to
0.495.
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Figure 9. Responses to a 1% increase in F for various configurations.

adjusted in the same manner. The implication is that the LV-
configuration is rather insensitive to the tuning of the level
loops, which is one of the main advantages with the LV-
configuration.

DV-configuration. Also in this case, an increase in feed
rate results in a corresponding increase in the bottoms flow,
and the response is therefore identical to that with the
LV-configuration.

However, in general, the two configurations behave
entirely different. For example, if we instead had increased
the vapour flow in the feed, then this would for the
DV-configuration again result in a corresponding
increase in B (since D is kept constant), whereas it
for the LV-configuration would results in an increase in
D. The resulting composition responses would be almost
the opposites.

LB-configuration. In this case the increased feed rate results
in an increase in D (after being send back up the column by
the action of the bottom level controller since B is constant),
so, as expected, the response is in the opposite direction
of that for the LV-configuration.

DB-configuration. In this case D and B are constant, so the
increased feed rate results in a ramp-like increase in the
internal liquid holdup and in the internal flows L and V (at
t = 500 min V has increased from 3.2 to about 5.1 kmol/
min). The result is that both products get purer, as expected
for an increase in internal flows. Obviously, the DB-
configuration cannot be left without adjusting D and B on a
long-term basis, because otherwise we would fill up or
empty the column, but we see that it does not behave
completely unreasonable on a short-term basis. This is why
it actually is a viable alternative if we use D and B for
composition feedback control.

(L/D)(VIB)-configuration. In this case the increased feed
rate results in a proportional increase in all sireams in the
column. This obviously the right thing to do (assuming that
the efficiency, i.e. the number of theoretical stages N,
remains constant), so we find, as expected, that the product
compositions remain almost unchanged.

However, even though the (L/D)(V/B)-configuration
has a ‘built-in’ mechanism to handle a feed rate increase,
it may not behave particularly well for some other

disturbances, such as for a disturbance in the feed
composition z.

4.7.2 Effect of level control

The LV-configuration is almost independent of the level
control tuning, but for the other configurations the level
control tuning is very important. This can be easily
understood, since when the level control is sufficiently
slow, all configurations behave initially as the uncontrolled
column with no level control (solid line in the simulations),
and then eventually, they will behave as shown in the plots
where we have assumed fast level control. Thus, if the
response for a given configuration differs significantly from
that with no level control, then the response will be sensitive
to the tuning of the level loop(s). In general, this will be the
case for all configurations, except for the LV configuration*.
Effect of level control for DV-configuration. We here
illustrate that the DV-configuration is sensitive to the tuning
of the level loops. As an example, consider the effect on
product compositions of an increase in boilup V by 1%.
With fast condenser level control, the increase in boilup
goes up the column, but is then returned back as reflux
through the action of the condenser level controller (since D
is constant), and we have an increase in internal flows only.
However, with a slow condenser level controller, there is no
immediate increase in reflux, so the initial response is
almost as if we had send the boilup out the top of the
column, as for the LV-configuration. Thus, we expect a
strong sensitivity to the level tuning. These predictions are
indeed confirmed by the simulations in Figure 10. Note in
particular that with a slow condenser level controller, x;, has
an inverse response when we change V. This may not be too
serious as we probably do not intend to use V to control x;,
but we also note that x; has a large overshoot, which may
make control difficult.

4.7.3 Frequency-dependent RGA
The frequency-response is easily evaluated from a
linearized model, G(s) = C(sI —A)~'B + D with s = jw,

* Actually, we need not require that the level control itself is fast, but rather
that L and V change as if the level control was fast.
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Time [min]
Figure 10. Tuning of the condenser level controller has a strong effect on

the ‘open-loop’ response for the DV-configuration. (Responses are for a 1%
increase in V with condenser level controller AL = KAM),).

and from this we can compute the RGA for various
configuration as a function of frequency.

In Figure 11 the magnitude of the diagonal RGA-element
is shown for four configurations. Note that the values at
steady-state are consistent with those given in (28)—(30). In
general, we want to RGA-elements on which we pair on, to
be about 1 at frequencies corresponding to the closed-loop
time constant, and indeed we find that the liquid flow
dynamics cause the RGA to approach 1 at high frequencies
for all configurations. Interestingly, the DB-configuration,
which has infinite RGA-clements at steady-state (w = 0),
approaches 1 at the lowest frequency of the four configura-
tions. This is generally the case when both products are high-
purity'®. For the LV-configuration the RGA approaches 1 at
frequencies above 1/6;, = 1/2.46 = 0.41 [rad/min].

5 UNDERSTANDING THE DYNAMIC BEHAVIOUR

The two examples (3-stage column and column A) have
provided us with important insight into the dynamic
behaviour of distillation columns. Here, we derive analytic
expressions which quantify these observations regarding the
dominant time constant (7,) the internal flow time constant
(1,) and the initial response.

Magnitude of diagonal RGA-element

- 2 =] 3

Frequency (rag/min)

Figure 11. RGA as a function of frequency for four configurations.
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5.1 Dominant Time Constant (External Flows)

For the 3-stage column we observed a dominant time
constant of about 4.5 min in response to a change in feed
composition zy. Similarly, for column A we observed a
dominant time constant of about 194 minutes for changes in
feed rate F, feed composition z,, and to individual changes
in relux L and boilup V.

We here derive an analytic expression for the dominant
time constant, denoted 7,. The approach is to consider the
total holdup of each component in the column and assume
that all stages have the same response’®. As we show below,
this directly leads to a first order model, and the dominant
time constant can be estimated very accurately. According
to Rademaker et al® (p.280) this idea dates back to the
beginning of the century (Lord Raleigh) and seems to get
rediscovered every few years.

Consider a column which initially (¢ = 0) is at steady state
(subscript 0). At ¢+ =0 a step change is introduced to the
column which eventually (¢ — o) moves the column to a new
final steady state (subscriptf). The nature of this step change is
not important as long as (i) the new steady state is kown and
(ii) it leads to a change in the total holdup in the column of
one or more component. This includes most disturbances and
inputs except changes in the internal flows (i.e. simultaneous
changes in L and V keeping product rates constant).
Assumption 1. The flow dynamics are immediate, i.e., for
t>0: M(t)=My, D@) =D, B(t) = B;. The assumption
is reasonable when considering the composition dynamics,
provided the flow response is much faster than the
composition response. Using Assumption 1 the overall
material balance for any component for ¢ > 0 becomes:

d N+1
p [Zl Myx (1) = Fyzy — Dyxp(6) — Bpxg(t)  (48)

=

Subtracting the final steady state

0 = Fszf - Dffo - foBf (49)
yields
N+1
dAx,(r)
Zle—dt—' = —DfoD(t) - BfoB(t) (50)

i=1

where A represents the deviation from the final steady-state,
eg., Axp(2) = xp(t) — xpy, €tC..

Assumption 2. All stages have the same dynamic responses,
that is:  Ax;(f) = Axk(r), Axp(t) = Axpk(t), Axy(t) =
Axzk(r). (Here k(0) =1 and Ax; = Ax,(0), Axp = Axp(0)
and Ax, = Ax;(0) denote the difference between the initial
and final steady state.)

This assumption is reasonable if the time constant for the
internal mixing in the column, 7,,,, is much shorter than the
dominant time constant. Here

__M M, = \iM (51)
TxM_L+V7 1—-i=2 i

where M, is the total liquid holdup inside the column. 7, is
approximately the time it takes for a composition change to
travel from the top to bottom of the column. Assumption 2
and equation (50) yield

N+1
(Z M,-fo,-) i(tt) = (=D;Axp — BAxpk(t)  (52)
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Solving (52) gives a linear first-order response
k() = e (53)

where the time constant 7, is:

N+1
i1 MiyAx;
=S 4

i

AS; is the supply imbalance
AS; = D;Axy, + B Axy = A(Fzp) — xppAD — x5 AB
(55)
A simple interpretation of (54) is
T, =
‘change in holdup of one component’ (kmol)
‘imbalance in supply of this component’ (kmol/min)

Comments on (54):

1. The column model was not linearized, and (54) applies to
any finite change provided Assumptions 1 and 2 hold.

2. The time constant depends on the magnitude and
‘direction’ (negative or positive change) of the step
change introduced. In general, we find that the time constant
is long if the column approaches high purity (with Ax;, and
Axy small), and short if it approaches low purity. This
implies that the dynamic response may show and asym-
metric behavior, where the dynamic response is different for
positive and negative changes.

3. The expression for 7, applies to any component in a
multicomponent mixture.

4. Equation (54) applies to any change which changes the
external material balance,i.e., which has AS; # 0. Equation
(54) does not apply for changes in the internal flows
(changing L. and V while keeping D and B constant) because
the denominator AS, is zero in this case (see (55)).

5. To compute 7, according to (54) only a steady-state
model of the column is needed, plus information about the
stage holdups..

6. One disadvantage of (54) is that the compositions on all
stages are needed to compute 7,. However, Skogestad and
Morari" have derived an analytical shortcut (sc) approxi-
mation, valid for high-purity binary separations and small
perturbations to the column, which requires much less data:

M, Mpxp,(1 —xp)  Myxp(1 — x5)

Tise = n S-Is IA_ IS (56)
where
g ol =), I, = Bxy(1 — xp) + Dxp(1 — xp)

B (1 = xp)xg ’
(57

Here M, is the total holdup inside the column, M,, and M,
are the condenser and reboiler holdups and S is the
separation factor. The first term in (56), which represents
the contribution from changing the component holdup
inside the column, dominates for columns with both
products of high purity. Note that 7, may be very small in
such cases resulting in very large values of 7.

Example 3-stage Column (continued). To illustrate the
usefulness of the above methods consider the simple three
stage column studied before. The following steady-state

profile is obtained when z; is increased from 0.50 to 0.51
with all flows constant:

Stage i L, V X b
Condenser 3 3.05 0.9091

Feed stage 2 4.05 3.55 0.5001 0.9091
Reboiler 1 3.55 0.1109 0.5549

From the difference between this ‘final’ steady-state
profile and the nominal profile given in Section 3 we get
using (54):

Yo MyAx,
A(Fzp) — xpAD — x5AB

T, =

1-0.0091 + 1-0.0264 + 1-0.0109
- 001—-0—-0
= 4.64 min (58)
As a comparison the shortcut formula (56) withx; = 1 — x),
and data from Table 2 yields:
M,/F M, M,

Thoe = xpxpInS  F  F
1
- 4141=453mi
0109439 1T . (59)

There is an excellent agreement between these estimates of
7, and the values obtained from the nonlinear simulations
and from the eigenvalues of the state matrix. The main
assumption behind the formulas used above for estimating
7, is that all stages have the same composition response.
This seems reasonable for such a small column with a large
reflux ratio, and is also confirmed by considering the time
constant for internal mixing, 7,,, = 1/(3.55 + 3.05) = 0.15
min, which is much less than 4.5 min, and Assumption 2 is
valid.

Example Column A (continued). Similarly, the agreement
is excellent for column A. Recall that the time constant
corresponding to the smallest eigenvalue was 194 minutes,
and approximately this value was also observed in the
simulations. As a comparison, for small perturbations in L or
V, (54) yields 7, = 193.5 min, whereas the shortcut formula
(56) with x; = 1 — x,, and data from Table 2 yields:

MJ/F M, My
xpxpIn S F ' F
_ 39.0.5

~0.01-0.99-9.19

Tl,xc -

+ 0.5+ 0.5 =215 min (60)

which shows good agreement. However, note that, because
of nonlinearity, the observed time constant will be much
smaller if we consider large changes, e.g. see Skogestad and
Morari". Again, the nonlinear effects can be reduced by use
of logarithmic compositions.

5.2 Internal Flows Time Constant
Skogestad and Morari'” derived the following estimate
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for the time constant related to changes in internal flows for
a liquid feed

N M,
2InSL;

2%

(61)

where M, is total liquid holdup inside the column. For well-
designed columns with « less than about 2 this gives
7, =~ M,/F.

As a comparison, for column A, M,/F = 19.5 min and
(61) gives 7, = 15.7 min. This compares very well with the
‘second’ eigenvalue of —0.083 and the observed responses
in Figure 6.

5.3 Initial Response and Logarithmic Compositions

For control, the ‘initial’ response, corresponding to the
desired closed-loop time constant, is of primary importance.
We now want to estimate the initial composition response
on a stage in response to a change in liquid or vapour flow.
For this it is sufficient to consider the ‘first-order’ effect
where we neglect the composition chang on neighbouring
stages. We assume constant molar flows, and, for simplicity,
we assume constant liquid holdup, i.e. we neglect the liquid
flow dynamics.

The steady-state (indicated by superscript *) component
material balance on stage i, assuming L, =L, , and
Vi = Vi—l’ iS

"

ISOZ M. L —
" dr

0= (1 — X)L + O — DV
(62)

Assume a step change is made in L, and V, such that the
flows for ¢t > 0 are Lf + AL, and V} 4+ AV,. We have

dx.
t>0: Mi'd?l = (i — X)L + AL)

+ Qi1 — (V] +4AV) (63)

Immediately following this change, we may neglect the
second-order effects of the change in composition and
assume the stage compositions to be unchanged, i.e. x; = xf,
etc. Subtracting the steady-state (62) then yields

dxi * * * *
t=0": Mia = (xiy — DAL, + (i, — y)AV,
(64)

Using (62) to eliminate (yf_, — y}) then yields the following
expression for the initial composition change

dxi 1 * * LT
5 =77 O =) (ALi -7 AV.-) (65)

1

t=0%:

Because of the term (x},; — x¥), the initial response, i.e. the
value of dx/dr in (65), depends strongly on the stage
location and operating point. This follows since the term
X}, — x¢ changes strongly with the stage location (e.g. see
the left plot in Figure 2), and also with the operating point.

Now, consider a binary separation and write (65) in terms
of the light component (L). Next, divide both sides by x;,.x;
to get the change in logarithmic composition (recall (19) and
note that x; X x; = 1). We omit the superscript * to simplify
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notation and get

dr Xy Xy dt

= LU (R (s _Liay,
M sy \ xp; v

(66)

Zii 1 Fait AL,-—EAVi
M, x;; Xy Vi

(67)

Near the bottom of the column where x; = 1 we have (see
proof below)

X Vg
il o 8 68
Xri Ly * %)

and it follows from (66) that dX,/d: at ¢t = O' is almost
constant (independent of the stage location), and its value
depends only weakly on the operating point (due to the
factor V,/Lg). Similarly, near the top of the column where
x,; =~ 1 we have'

Xpit1 &l (69)
Xy Lyo

and it follows again that dx;/d¢ at ¢ = O* is almost constant.
Proof of (68). Consider the bottom section at the column,
where the the equilibrium line is approximately linear,
yi, = oxg;. Combining this with the material balance,
Lix;, = Viy; + Bxg, yields

Y Ve B X

= e —— 70
XL Ly * Ly x; 0

The second term is negligible as we go up the column, and is
also small near the bottom for columns with (V/L); >> 1,
and (68) follows. (69) is derived in an analogous manner
since yy; = xg/o near the top.

In summary, we have shown that the initial response in
terms of logarithmic compositions is almost independent of
the operating point. Furthermore, since neighbouring stages
have the same composition response, the neglected second-
order composition changes tend to cancel out, and this
‘prolongs’ the initial response. The practical implication is
that the dynamic behaviour is much less nonlinear if we use
logarithmic compositions, and this was also confirmed in
the simulations in Figure 7. This is important for control as
it implies that linear control methods may be used if we
consider logarithmic compositions.

6 CONTROL

Distillation is probably the most studied unit operation in
terms of control. However, most papers use distillation as an
example to study their control algorithm, and do not really
consider the best way to control a given distillation column.
For example, there have been almost countless control
studies using the linear Wood and Berry* column model,
but these studies probably have not benefited distillation

T Actually, the repeated use of (68) and (69) may be used to derive the
short-cut formula for S in equation (13).
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Figure 12. One-point control of x,: Response to a 1% step increase (disturbance) in V. Solid line: simultaneous step increase in L (‘perfect operator’). Dashed

line: feedback where L is used to control x,, (PI-settings: k = 60, 7, = 3.6 min)

control very much. Also, there has been a large number
of control studies based on unrealistic column models, with
no flow dynamics, with no measurement and valve
dynamics/delays, and using multivariable controllers (e.g.
decouplers) assuming the model is perfect (e.g. with no
input gain uncertainty). Similarly, distillation columns have
become a popular example to test nonlinear control
algorithms. However, these studies almost never compare
their performance with that which could be obtained using
linear controllers with logarithmic transforms to counteract
nonlinearity.
All the examples in this section are for column A.

6.1 Myths about Slow Response

There are some myths about distillation control. One is
based on the observation of the very large open-loop time
constants, 7, observed for high-purity columns. This has led
people to believe incorrectly that distillation columns are
inherently slow and thus hard to control. However, the use
of feedback changes the dynamics (moves the poles) and the
closed-loop response time may be much shorter.

A convincing example is shown in Figure 12. Here we are
concerned with keeping the top composition x;, constant by
adjusting the reflux L. The bottom composition is not
important in this case. Consider a step increase (distur-
bance) in boilup V, e.g. due to a change in the steam
pressure. First consider the ‘perfect operator’, who notices
the change in V, and is able to directly set L to its new
desired value in an open-loop (feedforward) fashion. As
expected, this yields a rather slow settling towards the
steady-state (solid line), with a time constant of about
about 194 min (7,). Next, consider the use of feedback
where L is used to control x, (one-point control; dashed
line). This yields a much faster response, with a closed-loop
time constant of less than 10 minutes. The rather large
difference in composition response is surprising since we
see from Figure 12(a) that there is only a minor difference in
L.

A similar example, but with two-point control, where we

want to make a setpoint change in the top composition, is
shown in Figure 13. Again, the perfect operator is able to
directly set the reflux and boilup to their desired values in a
feed-forward fashion, and again this results in a sluggish
response. However, with feedback control (here shown
using two PI controllers) we can change the dynamics, and
achieve a much faster settling towards the new steady-state.

The closed-loop simulations in Figures 12 and 13 are
without measurement delay, but similar results are obtained
with a 1 minute measurement delay for x, and xz. This
illustrates that the closed-loop simulations are realistic from
a practical point of view.

6.2 The Control Problem

Let us here give a clearer description of the overall
control problem. Consider the distillation column in Figure 1
with a given feed* which has 5 manipulated inputs,

u=(L V D B V)

(these are all flows), and 5 controlled outputs,

y=(xD xp Mp, Mg P)T

(these are compositions and inventories: top composition xp,
bottom composition x;, condenser holdup M, reboiler holdup
My, pressure p). The process has poles in or close to the origin
and needs to be stabilized. In addition, especially for for high-
purity separations, the system is often strongly interactive as
indicated by large elements in the 5x5 RGA-matrix.
Another complication is that composition measurements are
often expensive, unreliable and with time delays.

Control configurations
In almost all cases, the distillation column is first
stabilized by closing three decentralized (SISO) loops for

* Throughout this paper we assume that the feed is given, i.e. it is a
disturbance in terms of control. However, sometimes one of the product
flows, D or B, is given instead. In this case F takes the role of a manipulated
input, whereas D or B is a disturbance.
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Figure 13. Two-point control: Setpoint change in x;, from 0.99 to 0.995 with x, constant, Solid line: simultaneous step increase in Land V to their new steady-
state values (“perfect operator’). Dashed line: feedback control using the LV-configuration with PI-settings in (82).

level and pressure, involving the outputs

T
Y2 = (MD My P)
The remaining outputs are then the product compositions

1= (xD xB)T

The linear model of this partially controlled system (after
closing the level and pressure loops involving u, and y,)
may then be written

¥ = P(s)uy + Py(s)d + P (s)y; an

The three SISO loops for controlling y, usually interact
weakly and may be tuned independently of each other.
However, since each level (tank) has an inlet and two outlet
flows, there exists many possible choices for u, (and thus for
u,). By convention, each choice (‘configuration’) is named
by the inputs u, left for composition control. For example,
the ‘LV-configuration’ refers to a partially controlled system
with

w=(L V), u,=(D B V;)'
and we have in this case
P(s5)=G"(s)

As mentioned, the LV-configuration is good from the
point of view that the effect of i, on y, is nearly independent
of the tuning of the level and pressure controllers (involving
y, and u,). However, we found that the problem of
controlling y; by u, is often strongly interactive with large
steady-state RGA-elements in G7.

Another common configuration is the DV-configuration
with

w=(D V), u,=(L B V)

In this case, the steady-state interactions from u, to y, are
generally much less, and P, = G”' has small RGA-
elements. But, as discussed earlier, G*"(s) depends strongly
on the tuning of the level loops, and a slow level loop for M),
may introduce unfavourable dynamics for the response from
u; toy,.
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There are also many other possible configurations
(choices for the two inputs in u,); with five inputs there
are 10 alternative configurations. Furthermore, one often
allows for the possibility of using ratios between flows, e.g.
L/D, as possible degrees of freedom in ,, and this sharply
increases the number of alternatives. For more details the
reader is referred to e.g. Shinskey® and Skogestad and
Morari*'.

Control issues

It is clear that we need to control the levels and pressure
(y,) in order to stabilize the system. It also seems reasonable
that we should control both the product compositions (y,), or
at least some related quality variables, because, after all, the
reason for having the distillation column in the first place is
to split the feed stream into two products with different
composition. However, in practice, this is often not the case.
Therefore, we need for composition control to consider
three different cases:

1. Open-loop*: No composition control; the operators
manully adjust the two remaining flows (u,).

2. One-point control: One composition loop is closed.

3. Two-point control: Both composition loops are closed.

The case with no control (‘open-loop’) has been common in
industrial practice. This is somewhat surprising, since we
have shown that without composition control, the distilla-
tion almost behaves as a large mixing tank (with a long time
constant 7,), and if we leave the compositions uncontrolled,
the columns will tend to drift away and be ‘filled up’ of light
or heavy component. In conclusion, from a practical point of
view, the composition profile behaves almost like an
‘unstable’ system. Thus, the composition profile needs to
be continuously monitored to maintain stable operation, and
this puts a heavy burden on the operators.

To ‘stabilize’ the composition profile, it is therefore

* The term ‘open-loop’, which here refers to the composition control
problem, is not quite correct since we assume there is already a level and
pressure control system in place involving u, and y,.
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recommended to close at least one composition loop (one-
point control, e.g. involving V and xz). In this case
the remaining degree of freedom (e.g. L) is adjusted
manually*.

From an economic point of view, disregarding the control
and measurement problems, two-point control is the best.
This follows since the optimal operating point generally
corresponds to a given purity specification. With one-point
control, the operator usually ‘overpurifies’ the uncontrolled
composition. While this makes control relatively simple, it
requires extra energy usage and reduces the capacity.
However, there is an important case where one-point control
often is optimal—this is when the column is operated at
maximum capacity, e.g. maximum vapour load, and there
effectively is only one degree of freedom left for
composition control.

To select a good distillation control configuration, one
should first consider the problem of controlling levels and
pressure (y,), and then consider the 2 X2 composition
control problem (y,). Another important issue is that one
often does not want large variations in the flows
(L,V,V,,D,B) because these changes usually cause dis-
turbances in other parts of the plant. In particular, we often
want to avoid large variations in D and B because these
often are feed streams to downstream units.

6.3 What is the Best Control Configuration?

The main problem when selecting the ‘best’ configuration
for distillation control is that there are so many issues to
consider.

First, there is the level control problem. Clearly, if there is
a large flow entering a tank, and this large flows varies, then
it is almost impossible to use a small flow for level control.
In practice, this means that we cannot use D and B for level
control for columns with very large internal flows, that is,
for separation of close-boiling mixtures with « close to 1**,
This effectively rules out the LV-configuration for close-
boiling mixtures, and makes the DB-configuration attractive
(because then the large flows L and V are used for level
control).

Next, there are the three different cases for the
composition control problem; open-loop, one-point and
two-point. And, to make things more difficult, the ranking is
very different for the three cases. We will illustrate this
below.

It then becomes clear that there is not a single ‘best’
configuration, and this explains why there sometimes seem
to be conflicting rankings given in the literature; one expert
focuses on level control; another on the feasibility for using
no composition control; another on one-point control; and
finally some people (e.g. Shinskey®) mostly consider two-
point control. Nevertheless, good tools have been developed
to analyse the various choices, so if you know what you
want, then one can probably find a good configuration to fit
your needs.

* The DB-configuration has a pole at s = 0 (an integrator) in addition to the
slow pole corresponding to the time constant 7,. With only one loop closed,
we will have D and B constant and the composition profile will ‘drift away’.
Therefore, we need to close both composition loops to ‘stabilize’ the system
with the DB-configuration.

** This follows since for a liquid feed, we have L,;, = F/(a — 1), see
equation (9).

Below we introduce some useful frequency-dependent
tools for analysing the alternative configurations. One
important advantage with these tools, is that they are
controller-independent, and the use of time-consuming
closed-loop time simulations is minimized.

6.4 Disturbance Rejection Using Various
Configurations: Controllability Analysis

We here consider, using column A as an example, the
disturbance rejection properties of four configurations, for
the three different cases for the composition control
problem; open-loop, one-point and two-point.

As disturbances we consider a 20% change in feed flow

(F=1%=0.2 [kmol/min]) and a 20% change in feed
composition (z =0.5 £0.1). We assume that these
disturbances are sinusoids with frequency w [rad/min], and
we want to consider the effect of varying w. Thus, a
frequency-analysis is needed. We will consider the effect of
these disturbances on the top composition, x;,.
Scaling. To make it easier to interpret the plots we need to
scale the variables. We scale the disturbances by their
maximum changes of =20%, and we scale x;, such that a
value of 1 (in the scaled variables) corresponds to an actual
change in x;, of £0.01 [mole fraction units], which we here
regard as the largest acceptable variation in composition. In
summary, this means: If, at a given frequency w, the effect
of F on x, is 1 (in scaled variables), then a sinusoidal
variation in F of 1+ 0.2 [kmol/min] will results in a
sinusoidal variation in x, of 0.99 +0.01 [mole fraction
units], which is on the borderline of what we accept. Thus,
in terms of scaled variables, we want the effect of the
two disturbances (F and zp) on x, to be less than 1
(approximately). Note that we use a linear analysis based on
the linearized model.

1. No composition control (‘open-loop’)

In Figure 14 is shown the ‘open-loop’ effect of the two
disturbances on x;, (more precisely, we plot {g,,| in (72) as a
function of frequency ford = z and d = F). The plot on the
left shows the effect of a £20% disturbance in F on the
scaled x,,, and the plot on the right shows the effect of a
+20% disturbance in zz. Plots are shown for the LV, DV,
DB and (L/D)(V/B) configurations.

The frequency plot for the feed rate disturbance in
Figure 14a confirms our findings from the simulations in
Figure 9; there is no steady-state effect for the (L/D)(V/B)
configuration, the LV- and DV-configurations are identical
and yield a quite large effect, and the DB-configuration is
somewhat worse. The curve for the (L/D)(V/B) configura-
tion increases with frequency, but only reaches 0.1 (well
below 1), so we conclude that the (L/D)(V/B) configuration
is ‘self-regulating’ (i.e. needs no control) with respect to
disturbances in F. The LV- and DV-configurations are not
self-regulating for disturbances in F, except at frequencies
above 0.04 rad/min where the column dynamics ‘average
out’ the effect of high-frequency variations. In other words,
we need control at frequencies up to 0.04 rad/min, and, if we
close a feedback loop involving x;, (one-point control, e.g.
using the reflux L), then we need a closed-loop time constant
better than (i.e. less than) 1/0.04 = 25 min (approximately).
This should be easy to achieve in practice.

For the feed composition disturbance, see Figure 14b,
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(a) Effect of feed flow F onzp

wt LV,DV,DB,(L/D)(V/B) 1
(all configurations)

Magnitude of = p (scaled)

10 18" 10"
Frequency [rad/min]

(b) Effect of feed composition zg on zp

Figure 14. Open-loop: effect of disturbances on top composition x;,.

there is no difference between the four configurations, The
reason is that we have assumed constant molar flows, so the
change in z. does not affect the flows, and is thus not
detected by the level controllers. Obviously, if the
assumption of constant molar flows does not hold, then
the configurations will differ. In any case, in our example,
the curves for z; are close to 10 at steady-state and cross 1 at
about frequency 0.045 rad/min, that is, with one-point
control of x;, we need a closed-loop response time better
than 1/0.045 = 22 min (approx) to achieve satisfactory
control when there are disturbances in zg.

In conclusion, some composition control is needed to
achieve acceptable disturbances rejection for this column
(as we will find for most distillation columns).

2. One-point control (perfect control of xz)

Consider the case when the second manipulated input
(e.g. V for the LV-configuration) is used to control xz. But x;,
is left uncontrolled, and we want to evaluate the effect
(denoted p,,) of the two disturbances on x,, in this case. As
an example, consider the effect of a disturbance d using the
LV-configuration. The linear model in terms of deviation

—2X pp

Magnitude of zp (scaled)

10 10° 107 10’
Frequency [rad/min]

(a) Effect of feed flow F onzp

variables is*

xp = gul+ g,V + gud (72)

¥g = gL+ gnV + 8gnd (73)
For simplicity (to avoid the effect of the tuning) we assume
that x,, is perfectly controlled using V. Thus, set x; = 0 in
(73) and solve for V, and substitute the results into (72) to
get

Xp = (811 - 81282_21821) L+ (gdl - 81282_21842) d (4

Pul Pd1

Thus, by controlling x,, the effect of a disturbance d on x,
has changed from g,) 10 pyy = g1 — 81282 8-

In Figure 15 we show the effect of the two disturbances
on xp, with one-point control (more precisely, we plot |p|
as a function of frequency for the four configurations). The
results are quite interesting. Let us take the least interesting
first; with the DV- and DB-configurations, we are now
keeping D constant, so, as expected, the disturbances still
have a large effect on x;,, especially at low frequencies.

Magnitude of z p (scaled)

‘10" 107 u;“
Frequency [rad/min]

(b) Effect of feed composition zf on zp

Figure 15. One-point control of x,: effect of disturbances on top composition x;,.
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* In equation (72) x,, is really dx,, etc., but we have omitted the differential
symbol to simplify notation.
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Thus, we need to close also the loop involving x;, and D to
achieve acceptable control for these configurations.

Next, consider the LV-configuration. We see that with xp
controlled, the effect of both disturbances are drastically
reduced, and especially the effect of z;. The reason is that
the two product compositions are strongly coupled, so by
controlling one of them, we effectively control the other. In
fact, the effect of z; on xp, is less than 1 at all frequencies, so
we have ‘self-regulation’. The effect of F is slightly above 1
at low frequencies. However, if we measure F and
implement a ‘feed-forward controller’ by using the ratio
L/F, then we should also achieve ‘self-regulation’ for F. In
summary, for this example we may achieve acceptable
control of both products, by using one-point control of xp
and keeping L/F constant.

For the (L/D)(V/B) configuration, we still have ‘self-
regulation’ with respect to F, and the effect of the disturbance
in z is significantly reduced. Nevertheless, it remains above
1 at low frequencies, and since a feed-forward controller
based on measuring z, may be rather costly and difficult to
implement, we need to use feedback control also of x;,.

In conclusion, for one-point control the LV-configuration
is the probably the best choice. It is also very simple to
implement, and this explains the popularity of this scheme
in industry for one-point control.

3. Two-point control (CLDG)

With two-point control both compositions are controlled,
so the effect of disturbances will be small at low
frequencies. However, the often severe interactions
(caused by nonzero values of g;, and g,,), may make two-
point control difficult and thus result in poor dynamic
performance. Let us assume that two single-loop (decentra-
lized) controllers are to be used to control the compositions,
e.g. with the LV-configuration we typically use one PI-
controller to control x,, using L, and another PI-controller to
control x; using V. The question is: How fast must these
controllers be tuned to achieve acceptable control? This can
be answered by plotting the closed-loop disturbance gain
(CLDG) which gives the effective disturbance effect caused
by interactions.

To derive the expression for the CLDG, we need a little
control theory. Let G denote the 2 X 2 plant for the effect of
the inputs u (e.g. L and V) on the product compositions y (xp
and x,), and let G, denote the effect of the disturbances d (F
and z;). In terms of deviation variables we then have the
transfer function model

y=Gu+Gd (75)
Now, let G denote the diagonal elements in G, and let
=G -GG (76)

represent the relative interactions (which we obviously
want to be small). The closed-loop response with the
two-composition loops closed is given by

y=8G; S=I+GK)" amn
where K is the diagonal composition controller (it is
diagonal since we assume decentralized control) and S is
the sensitivity function (it is not diagonal). The correspond-
ing closed-loop response if we neglected interactions in G

would be
y=5G,; S=U+GK)" (78)

Actually, S (which is diagonal) is the closed- loop response
of the loops when considered one-by-one. It is relatively
easy to show that the following relationship between S and S
holds (e.g. Skogestad and Postlethwaite?).

S=3(I+Ed-3)" (79)

Now, assume that g; #0 and g, #0, and that the
controllers have integral action, and consider the low
frequencies where we have tight control and thus § =~ 0. At
these frequencies we then get

§=~38U + E)'=8GG™ (80)

where I' = GG! is the performance RGA (PRGA) which
has elements vy;. The PRGA has the same diagonal elements
as the RGA, but different off-diagonal elements. The PRGA
gives the effect of interactions on closed-loop performance
with decentralized control. Combining (77) and (80) then
gives the closed-loop disturbance response at lower
frequencies

y~8G,d, G,=GG'G, (81)

where G, is the matrix of closed-loop disturbance gains
(CLDG). By comparing (78) and (81), we see that G, gives
the effect of the disturbances when the interactions are
neglected, whereas the CLDG (G,) gives the effect of the
disturbances for decentralized control when interactions are
taken into account. More precisely, from (81) we need
1/]5;] = |1 + L;| to be larger than |g,] to achieve acceptable
performance, i.e. |y;| = 1. Here L, = g;k; is the loop gain in
loop i. At lower frequencies where |L;| is large, we must
then require |L;| > |g,|. Similarly, for setpoints changes of
unit magnitude, we want |L;| to be larger than the the
PRGA’s |v;| (at least at frequencies where we want to track
the setpoints).

We can therefore, from frequency-dependent plots of G,
(CLDG) and T' (PRGA) for each output, tell how fast the
controller in this loop (involving the output in question)
must be to achieve acceptable closed-loop performance.
(This ends the control theory part.)

Now, consider Figures 16a—b which show the effects on
xp, of disturbances in F and z;, with decentralized control
(more precisely, the plot shows the CLDG, |g,l, as a
function of frequency).

For the LV-configuration the interactions strongly
amplify the effect of F whereas they reduce the effect of
zr (compare Figure 16 with Figure 14). For the disturbance
in F, we see from the curve LV in Figure 16a, that its effect,
|81, is larger than 1 up to about 0.2 [rad/min]. This means
that, to achieve acceptable control, we need the top
composition loop (when evaluated alone) to be effective
up to about 0.2 [rad/min], i.e., we need the closed-loop
response time for the loop involving L and x;, to be better
than 1/0.2 =5 min (approximately). A similar analysis,
based on the CLDG for x; (Figure 16c—d) shows that we
need the closed-loop response time for the bottom
composition loop to better than 1/0.3 = 3.3 min (approxi-
mately). In summary, it is possible to achieve acceptable
two-point control with the LV-configuration, but it requires
fast control in both composition loops in order to reject
disturbances in F.
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Figure 16. Two-point decentralized control (CLDG): effect of disturbances on product compositions

To check the validity of this conclusion for the LV-
configuration we use two single-loop PI controllers:

14 3.76s
ki(s) = 26'1—3.76s (xp — L loop);
14 3.31s
k(s) = — 37'5W (xz — V loop) (82)

The loop gains, |L;| = |g;k:|, with these controllers are
larger than the closed-loop disturbance gains, |g,|, at
frequencies up to crossover, see Figure 17 (note that the
gain is slightly higher for the bottom composition controller
as required by the CLDG-analysis). Closed-loop simula-
tions with these controllers are shown in Figure 18*. The
simulations confirm that the disturbance in F is more easily
rejected than the disturbance in z,.. They also confirm that z,,
has a smaller effect on x;, then on x;. In general, we find an
excellent agreement between a CLDG-analysis which
requires no controller tuning, and the simulated closed-
loop performance with decentralized control.

The CLDG-plot for the other configurations in Figure 16
show that these do not need as fast control to get acceptable

* We did not use logarithmic compositions as controller inputs in these
simulations, although this is generally recommended. This is especially the
case if we want to make large setpoint changes, say between 99% and
99.9% which would change the initial process gain by a factor of 10 unless
we used logarithmic compositions, recall (66).

Trans IChemE, Vol 75, Part A, September 1997

performance as for the LV-configuration. In particular, the
(L/D)(V/IB)-configuration performs well. However, recall
that this assumes that the levels are tightly controlled.

6.5 Conclusion Configurations

The following conclusion is from Skogestad et al.'s. The
arguments mainly refer to composition control, although
comments on level control are included. For ‘simple’
control problems, with A{}(0) less than about 5, the
LV-configuration is usually recommended.

Thus, the arguments below regarding two-point control
refer to columns which are ‘difficult’ to control with the
conventional LV-configuration, that is, with AY/(0) > 10
(approximately).

LV-configuration. A good choice for one-point control. It is
usually not recommended for two-point control for cases
where A2 (0) > 10 because of sensitivity to disturbances and
strong interactions between control loops. In particular, the
LV-configuration performs poorly with large dead-times.
However, if it possible to achieve fast control, e.g. by
controlling instead two temperatures inside the column, then
the LV-configuration may still be a viable option.

DV-configuration. One-point control: D must be used for
automatic control (not in manual). May be better than LV
for columns with large reflux because top level control is
simpler. Two-point control: Works relatively poor when
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Figure 17. Loop gains L; = g,k;, CLDGs g,, and PRGAs v; for LV-configuration.

bottom product is not purer than top, but is better when
bottom product is pure. Disadvantages: (1) Performance
may change depending on operating conditions, (2) Poor
performance if failure leeds to D constant (for example, if
the top measurement fails).

DB-configuration. Unacceptable performance if used for
one-point control. Two-point control: Good control quality,
in particular for columns with high purity and/or large
reflux. Simple to implement. Level control also favours this
configuration for columns with large reflux. The main
disadvantage is that it lacks integrity; performance is very
poor if failure gives D or B constant. In particular, one can
not put one of the loops in manual.
(L/D)(V/B)-configuration. This is a good overall choice for
all modes of operation. The main disadvantage is the need
for measurements of all flows L, D, B and V which makes it
more failure sensitive and more difficult to implement, and
the need for tight level control.

(L/ID)V-configuration. Behaves somewhere between LV and
(LID)(V/B).

In summary, two-point distillation control is probably not as
difficult as many people believe. After all, the liquid flow
dynamics decouple the two column ends at high frequency,

so if sufficient effort is put into making the quality loops fast
(e.g. by using temperature measurements with an outer
composition cascade), then it should be possible to achieve
good control in most cases. Finally, logarithmic composi-
tions (or the similar logarithmic transformations on the
temperatures, see (17)), should be used to counteract the
effect of nonlinearity.

6.6 5 x5 Control

From a theoretical point of view, it is clear that the
‘optimal’ controller should use all available information
(measurements of outputs and disturbances, plant model,
expected model uncertainty, expected disturbances, known
future reference changes, given constraints, etc.) to
manipulate all 5 inputs (but avoiding large changes) to
keep all 5 outputs close to their desired setpoints. Something
close to this ‘optimal 5x35 controller’ can be realized
using model predictive control (MPC). In addition to
achieving better control performance, one then avoids the
issue of selecting a control configuration, and the need to
design special systems to handle input saturation (constraints)
etc.

] SN . Y-
_6 1 1 i i 1
0 50 100 150 200 250 300
Time [min]

Figure 18. Closed-loop simulations with LV-configuration using PI-tunings from (82). Includes 1 min measurement delay for x,, and x,. t = 10: F increases
from 1 to 1.2; £ = 100: z, increases from 0.5 to 0.6; 1 = 200: setpoint in x,, increases from 0.99 to 0.995.
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In fact, Lundstrém and Skogestad® found in a
simulation study that very good control, even when
model uncertainty is taken into account, could be achieved
using MPC. However, so far no industrial implementations
of 5 X 5 or even 4 x 4 MPC have been reported. The reason
is the cost of obtaining the dynamic 5X5 model and
tuning the controller, which must be traded off against the
improvements in control performance. Also, most of the
industrial implementations of MPC today use a model
based on on-line identification, whereas it probably is better,
due to the strong interactions in the distillation models
which may be difficult to identify, to use a first-principle
model.

7 EFFECT ON CONTROL OF COLUMN DESIGN

How should the column be designed to make feedback
control easier?* In terms of composition control, the best is
probably to add extra stages. This has two potential
advantages:

1. It makes it possible to overpurify the products with only a
minor penalty in terms of energy cost; recall the expression
for V,,;, in (13) which is independent of the purity. The
control will then be less sensitive to disturbances.

2. If we do not overpurify the products, then with ‘too many’
stages a pinch zone will develop around the feed stage. This
pinch zone will effectively stop composition changes to
spread between the top and bottom part of the column, and
will therefore lead to a decoupling of the two column ends,
which is good for control.

In many columns, the disturbances have a fast effect, and
we need fast control to counteract them. It is recommended
to install at least three temperature sensors in each column
section. This makes it possible to correct for pressure changes
and to use cascade control based on fast temperature
measurements or to use the temperatures for estimating the
product compositions. Furthermore, the reflux system and
reboiler should be designed such that it is possible to make
fast changes in the reflux L and boilup V.

What about trayed versus packed columns? A packed
column usually has a factor of two or smaller liquid holdup.
This is in itself a disadvantage since disturbances will have a
faster effect, and we can tolerate less delays in the
measurements and in the manipulated inputs (valves). On
the other hand, in a packed column the decoupling effect of
the liquid flow dynamics is more significant, because there
is no ‘dead volume’ below the weir as in a tray column, and
this will be an advantage with two-point control. Further-
more, in a packed column, the parameter A, representing the
initial effect of an increase in vapour flow on liquid flows, is
close to zero. This is an advantage compared to a trayed
column where we may have A>1, resulting in an
undesirable inverse response behaviour.

8 CONCLUSION

In this paper, we have presented some important topics
for the dynamics and control of distillation columns,

* We are not here considering the steady-state operability which, for
example, involves the ability to run the column at smaller or higher loads.
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including a treatment of the steady-state operation. The
issues covered include the separation factor, logarithmic
compositions, external flows, internal flows, initial compo-
sition response, dominant time constant, gain matrix for
various configurations, linearization, mass flows, distur-
bances, myths about slow control, one-point and two-point
control, controllability analysis using the RGA and CLDG,
selection of control configurations, and 5 X 5 control. The
treatment has been mainly through examples, and it is hoped
that the reader can develop insight and intuition, which is
needed for applying the results in practice and for reading
the literature in more detail.

APPENDIX: STATE-STATE GAIN EXPRESSIONS

It has been mentioned that the separation factor can be assumed
constant when considering the effect of changes in external flows.
Here we consider this in more detail, and derive simplified gain
expressions for small changes in external and internal flows.

he separation factor and the steady-state material
balance written in terms of the light component for a
binary separation is

/ _
S — (xL xH)top — xD(l xB) (83)
(xL/xH) om (1 — Xp)Xp
Dxp, + (F — D)xy = Fzg (84)

With a given feed (Fz; given) and with S and D given, this gives a
second order equation for x;,, and x; (Shinskey®).

Example. Column A. Consider a column with z,=0.5, x, = 0.99,
xg = 0.01 (all these refer to the mole fraction of light component) and
D = B = 0.5 [kmol/min]. We have S = (0.99-0.99)/(0.01-0.01) =
9801. Now consider a 20% increase in the distillate D from 0.50 to
0.6 [kmol/min]. With D=0.6 and Fz, = 0.5, (83) and (84) can be
solved to obtain

xp = 0.8330 and x; = 0.00051

To check the estimate obtained by assuming S constant, we can
compute the exact composition for column A. With D = 0.5 we
find that x, = 0.99 and x; = 0.01 are obtained with L = 2.706. We
then keep L fixed and increase D to 0.6. This gives

xp = 0.8324 and x; = 0.00134

so § has actually decreased from 9801 to 3687. Thus, the
assumption of constant § was not really valid in this case.

A more careful analysis shows that the assumption of S constant
for changes in the external flows holds best as long as both products
remain relative pure, e.g. see (85). This is confirmed by
considering a small (and more realistic) increase in D from 0.5
to 0.505. By assuming S constant we find that x;, changes from 0.99
to 0.98399 and x; from 0.01 to 0.00623. For ‘column A’ this is
almost the same as the exact values of 0.98402 and 0.00612 (i.e.,
we have a small increase in S from 9801 to 9872).

To analyse the difference between external and internal flows,
we differentiate (83) and (84) assuming Fz, constant. This yields
the following exact expressions for the changes in the logarithmic
compositions (binary separation)

1
(1 = xp)xp
—(xp — x5)dD + Bxg(1 — xp)dIn S

= I (85)

dX, =
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1
aXy= ——
BT (= xp)xp
_ —(xp, — x3)dD — Dxp(1 — xp)d1InS 86)
I
where the ‘impurity sum’ is defined as
I, = Bxp(1 — xp) + Dxp(1 — xp) (87)

First consider changes in external flows, i.e. changes in D and B,
for which the second term on the right hand side in (81) and (82),
involving changes in S, usually can be neglected. We get in terms
of logarithmic compositions

(88)

(These logarithmic gains change with the operating point, but note
that the changes are even larger if we do not use logarithmic
compositions.) Next consider, changes in internal flows, for which
dD = 0 so only the second term involving changes in § remains.
We get in terms of logarithmic compositions

0Xp\ _ Bxg(l —xp) (dInS
(5?) oo L\ ) &
0Xz\ _ Dxp(1 —xp) dlnS
( oL )f 1\ ) e
where from the short-cut model (15) we have
olnS zﬁl qrF +ﬂl (1 — gpF) 1)
oL J, 2LL+4gqsF 2VV+(1—gpF

To compare the effect of changes in internal and external flows, we
consider the effects of a unit flow change in D and L on |Xp| + |Xp],
and take the ratio (denoted y). We get from (88)-(90)
S Xp—Xp 1
V=277 (a In s)
oL /o
~ also gives an estimate of the condition number of the steady-state
gain matrix of the plant (the ratio between the largest and smallest
effect of flow changes). For example, for column A we get from

o1n

92)

xp— x5 = 098, I, =0.0099,
9InS 20
~ =19
( oL )D 2.706-3.706 ?
= ~y=9227

As a comparison, the exact value is ((91n S)Y/(OL)) ,= 2.76 which
gives y = 71.7.
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