Fondamenti di Automatica - 8 settembre 2005

Importante: giustificare le risposte con un minimo di ragionamento e di calcoli.

Esercizio 1. Si consideri un motore elettrico a corrente continua, caratterizzato da $R = L = J = K_t = K_e = 1, c = 3$, dove R, L sono resistenza ed induttanza dei conduttori dell'armatura, J il momento d'inerzia, c il coefficiente d'attrito (che causa una coppia $\tau_{attr} = -c\omega$, essendo ω la velocitá angolare di rotazione), K_t, K_e le costanti di accoppiamento elettrico-meccanico $(e = K_e \omega, \tau_{motore} = K_t i, \text{ con } e \text{ forza controelettromotrice } e i \text{ corrente elettrica})$. Il motore é alimentato da una tensione elettrica v ed é sottoposto all'azione di una coppia esterna τ . θ é la posizione angolare, cioé $\omega = \dot{\theta}$. É richiesto di:

- determinare le funzioni di trasferimento, siano G(s) e $\hat{G}(s)$, tra v(t) e $\theta(t)$ e tra $\tau(t)$ e $\theta(t)$;
- supponendo di applicare la legge di controllo $v(t) = H[r(t) \theta(t)]$, H costante, H > 0 (r é l'ingresso di riferimento), studiare con Routh la stabilitá del sistema retroazionato al variare di H;
- determinare i valori di H, se esistono, che garantiscano che un "disturbo" $\tau(t)$ costante venga attenuato, a regime, nell'uscita θ , di un fattore 10 oppure di un fattore 100.

Esercizio 2. Si consideri la classica connessione in retroazione unitaria negativa di $G(s) = \frac{K(s+1)}{s(s-10)}$.

- si tracci il diagramma di Bode di G(s) per K=1;
- si tracci il diagramma di Nyquist di G(s) per K=1, evidenziando intersezioni con gli assi e gli eventuali asintoti;

• si impieghi il Criterio di Nyquist per determinare il numero dei poli in anello chiuso a parte reale positiva ed a parte reale nulla al variare del guadagno K da 0 a $+\infty$.

Esercizio 3. Data
$$G(s) = \frac{K(s-1)}{(s+2)(s^2 - \frac{1}{3}s + \frac{2}{9})}$$
:

- si tracci il luogo delle radici (K > 0);
- si trovino i valori di K positivi per cui il sistema ad anello chiuso é stabile;
- si trovino i valori di K positivi per cui tutti i modi del sistema ad anello chiuso non hanno componenti oscillatorie.

Esercizio 4. Data $G(s) = \frac{s+1}{s^2+0.2s+1}$ si vuole progettare un compensatore C(s) stabilizzante in modo da soddisfare alle seguenti specifiche:

- errore a regime alla rampa unitaria pari a circa 0.01;
- pulsazione di attraversamento circa uguale a 100;
- margine di fase elevato, di almeno 60° o piú.

É richiesto di trovare un'espressione esplicita per un possibile adatto C(s), motivando adeguatamente le ragioni che portano alla sua scelta.

Fondamenti di Automatica - 8 settembre 2005 - Soluzioni

Esercizio 1. Si consideri un motore elettrico a corrente continua, caratterizzato da $R=L=J=K_t=K_e=1, c=3$, dove R,L sono resistenza ed induttanza dei conduttori dell'armatura, J il momento d'inerzia, c il coefficiente d'attrito (che causa una coppia $\tau_{attr}=-c\omega$, essendo ω la velocitá angolare di rotazione), K_t, K_e le costanti di accoppiamento elettrico-meccanico $(e=K_e\omega,\tau_{motore}=K_ti,$ con e forza controelettromotrice e i corrente elettrica). Il motore é alimentato da una tensione elettrica v ed é sottoposto all'azione di una coppia esterna τ . θ é la posizione angolare, cioé $\omega=\dot{\theta}$. É richiesto di:

- determinare le funzioni di trasferimento, siano G(s) e $\hat{G}(s)$, tra v(t) e $\theta(t)$ e tra $\tau(t)$ e $\theta(t)$;
- supponendo di applicare la legge di controllo $v(t) = H[r(t) \theta(t)]$, H costante, H > 0 (r é l'ingresso di riferimento), studiare con Routh la stabilità del sistema retroazionato al variare di H;
- determinare i valori di H, se esistono, che garantiscano che un "disturbo" $\tau(t)$ costante venga attenuato, a regime, nell'uscita θ , di un fattore 10 oppure di un fattore 100.

Soluzione. Le equazioni sono

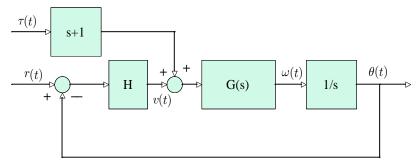
$$V(s) - E(s) = (R + sL)I(s), \ E(s) = K_e\Omega(s), \ \tau_{motore}(s) = K_tI(s)$$
$$Js\Omega(s) = \tau_{motore}(s) - c\Omega(s) + \tau(s)$$

dalle quali si ricava

$$\Omega(s) = \frac{K_t V(s) + (R + sL)\tau(s)}{(sJ + c)(sL + R) + K_t K_e} = \frac{V(s) + (s+1)\tau(s)}{(s+2)^2}$$

Poiché θ é l'integrale di ω , si ha infine $G(s) = \frac{1}{s(s+2)^2}$, mentre $\hat{G}(s) = \frac{s+1}{s(s+2)^2}$. Il prossimo quesito tratta del solito schema a retroazione unitaria con C(s) = H (si veda la figura). Il polinomio caratteristico ad anello chiuso é allora $s(s+2)^2 + H = s^3 + 4s^2 + 4s + H$, e la tabella di Routh porge facilmente stabilitá solo per 0 < H < 16. Riportando il "disturbo" τ all'ingresso,

esso viene "filtrato" da $\frac{s+1}{H}$, che per s=0 vale $\frac{1}{H}$. Il sistema é di tipo 1, quindi l'errore a regime al gradino (il disturbo costante) é nullo quando esiste la risposta a regime, cioé in caso di stabilitá, quindi per ogni valore di 0 < H < 16. Quindi H=10 (dentro l'intervallo di stabilitá) garantisce l'attenuazione del fattore 10. Impossibile invece ottenere l'attenuazione di un fattore 100, in quanto H=100 non corrisponde ad un sistema stabile.

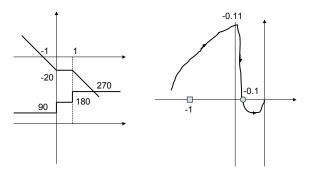


Esercizio 2. Si consideri la classica connessione in retroazione unitaria negativa di $G(s) = \frac{K(s+1)}{s(s-10)}$.

- si tracci il diagramma di Bode di G(s) per K=1;
- si tracci il diagramma di Nyquist di G(s) per K=1, evidenziando intersezioni con gli assi e gli eventuali asintoti;
- si impieghi il Criterio di Nyquist per determinare il numero dei poli in anello chiuso a parte reale positiva ed a parte reale nulla al variare del guadagno K da 0 a $+\infty$.

Soluzione. Messo in forma di Bode, G(s) (per K=1) ha guadagno $-\frac{1}{10}$, un polo nell'origine ed uno positivo in 10, uno zero negativo in -1. Ne consegue il diagramma di Bode di figura. Per Nyquist, si trova un asintoto in $-\frac{11}{100}$, e lo studio di parte reale ed immaginaria di $G(i\omega)$ mostra che la parte immaginaria $(\frac{10-\omega^2}{\omega(100+\omega^2)})$ si annulla per $\omega=\sqrt{10}$, cui corrisponde il

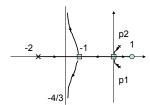
punto $-\frac{1}{10}$, mentre la parte reale $(-\frac{11}{100+\omega^2})$ non si annulla mai. Ne consegue il diagramma di Nyquist di figura. Per K<10, completando con il cerchio orario all'infinito si ha un giro orario (N=-1) attorno al punto -1, che con $G_+=1$ implica $W_+=2$ (due poli a parte reale positiva). Invece per K>10 il giro diventa antiorario (N=1) e quindi $W_+=0$, cioé stabilitá. Per K=10, infine, il passaggio per il punto -1 per $\omega=\sqrt{10}$ implica la presenza dei due poli immaginari puri $\pm i\sqrt{10}$.



Esercizio 3. Data $G(s) = \frac{K(s-1)}{(s+2)(s^2 - \frac{1}{3}s + \frac{2}{9})}$:

- si tracci il luogo delle radici (K > 0);
- si trovino i valori di K positivi per cui il sistema ad anello chiuso é stabile;
- si trovino i valori di K positivi per cui tutti i modi del sistema ad anello chiuso non hanno componenti oscillatorie.

Soluzione. Abbiamo tre poli, in $s=-2,\frac{1}{6}\pm i\frac{\sqrt{7}}{6}$, ed uno zero in s=1. L'equazione dei punti doppi porge $2s(s+1)(s-\frac{5}{3})=0$ che ammette le soluzioni $s=0,-1,\frac{5}{3}$. s=0 corrisponde a $K=\frac{4}{9}$, mentre s=-1 corrisponde a $K=\frac{7}{9}$. Invece $s=\frac{5}{3}$ non appartiene al luogo, corrispondendo ad un valore negativo di K. Si ha passaggio per l'asse immaginario per $K=\frac{4}{9}$ nel punto s=0, ma c'é sempre instabilitá in quanto almeno un ramo del luogo sta sempre a destra dell'asse immaginario. Infine, centro asintoti in $s=-\frac{4}{3}$, con due asintoti a $\pm 90^{\circ}$. Concludendo, stabilitá per nessun valore positivo di K, e modi non oscillanti per $\frac{4}{9} < K < \frac{7}{9}$, valori in cui i rami del luogo stanno sull'asse reale (finché raggiungiamo un punto doppio a partire dall'altro). Il luogo é riportato in figura.

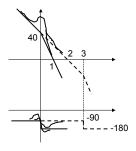


Esercizio 4. Data $G(s) = \frac{s+1}{s^2+0.2s+1}$ si vuole progettare un compensatore C(s) stabilizzante in modo da soddisfare alle seguenti specifiche:

- errore a regime alla rampa unitaria pari a circa 0.01;
- pulsazione di attraversamento circa uguale a 100;
- margine di fase elevato, di almeno 60° o piú.

É richiesto di trovare un'espressione esplicita per un possibile adatto C(s), motivando adeguatamente le ragioni che portano alla sua scelta.

Soluzione. Il requisito alla rampa impone l'adozione di un blocco $\frac{100}{s}$. Il diagramma di Bode di $\frac{100}{s}G(s)$ é in figura (il picco di risonanza é dovuto ai poli complessi con $\omega_n = 1$ e $\xi = 0.1$).



Da esso si evince una ω_c pari a circa 10, con un piccolissimo margine di fase. Occorrendo aumentare ω_c di un fattore 10, é necessario il ricorso ad una rete anticipatrice, con lo zero posizionato una decade prima di ω_c , quindi in s=-1. Con tale scelta, il diagramma "taglia" circa in $\omega_c=100$, migliorando nel contempo il margine di fase, che risulta ora di quasi 90^o . Per la presenza dell'integratore, giá il ricorso a $C(s)=\frac{100(s+1)}{s}$, che é propria, sarebbe sufficiente. Volendo tuttavia "completare" la rete anticipatrice con un polo, é sufficiente posizionarlo ben oltre ω_c , in modo da non abbassare troppo la fase. Una scelta possibile é $C(s)=\frac{100}{s}\frac{s+1}{1+\frac{s}{1000}}$ (si veda la figura).