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Abstract. We deal with the problem of estimating the output covariance of a linear filter fed
by a stationary process. The estimated covariance must be positive semi-definite and must be in a
prescribed vector space. It turns out that the problem is nontrivial when imposing both constraints.
In this paper, we present and compare different strategies available in literature.
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1. Introduction. Let us consider a stationary time series w = {wk}∞k=−∞ ob-
tained as the output of a given finite dimensional linear filter G(z) = (zI−A)−1B fed
by a stationary process y = {yk}∞k=−∞. The corresponding output state covariance
matrix Σ = E[wkw

∗
k] (∗ denotes transposition plus conjugation) belongs to a vector

space V that can be described by the parameters of the linear filter G(z), [11], [9].
Given a finite length-collection of sample data y1 . . . yN , an estimate of Σ is repre-
sented by the sample covariance Σ̂C :=

∑N
k=1 wkw

∗
k which is a positive semi-definite

matrix. This estimate, however, does not belong in general to the prescribed vector
space. Then, one could project Σ̂C onto the vector space V. The projected matrix,
however, is not guaranteed to be positive semi-definite. Indeed, when N (the length
of the data record) is small it often fails to be positive semi-definite.
The importance of the estimation of covariance matrices belonging to the vector space
induced by G(z) is due to the development of a family of spectral estimation methods
introduced by Byrnes, Georgiou and Lindquist in [3], and [4], and further developed
and modified in [10, 7, 6]. These methods, for which y1, . . . , yN and G(z) are the
given data, are based on a moment problem that requires an estimate of the covari-
ance matrix of the output w. The first of these spectral estimation methods was called
“THREE”, [3]: we shall thus refer to these methods as “THREE-like”.
In this paper we characterize the vector space associated to a general filter of the form
G(z) = C(zI−A)−1B+D thus extending part of the results presented in [11]. Then,
we introduce three different approaches to estimate the output covariance matrix,
compatible with the structure of the given filter G(z), based on the knowledge of the
input sample data y1, . . . , yN . The first method is a simple procedure which projects
the sample covariance Σ̂C onto the specific vector space. If the projected estimate fails
to be positive semi-definite then it is “adjusted” in some specific way. Then, we in-
troduce a maximum entropy approach, [8], which leads to a positive definite estimate
Σ̂ consistent with the filter structure. Notice that this technique requires that the
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6/B, 35131 Padova, Italy zorzimat@dei.unipd.it.

1



2 A. FERRANTE M. PAVON AND M. ZORZI

sample covariance Σ̂C is strictly positive definite (which is a very mild assumption)
and that the filter’s output and state coincide. On the other hand, these techniques
do not exploit the knowledge of y1, . . . , yN . The third method is an extension, [16],
of the biased spectral estimator [15] employed for estimating a covariance matrix of
order M with Toeplitz structure. This third method hinges on the characterization of
Σ in terms of the filter G(z) and the covariance lags sequence of the input process y.
Thus, given an estimate of the covariance lags sequence of the input process, we can
compute a positive semi-definite estimate Σ̂ consistent with the structure imposed by
the filter. Finally, we compare the performances of the methods afore cited.

2. Problem formulation. Consider a linear filter

xk+1 = Axk +Byk

wk = Cxk +Dyk, k ∈ Z,(2.1)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m and A has all its eigenvalues
in the open unit disk. The input process y is Cm-valued, wide sense stationary and
purely nondeterministic. As mentioned in the Introduction, Σ = Σ∗ ≥ 0 denotes the
covariance matrix of the (stationary) output process w and we denote by

G(z) = C(zI −A)−1B +D(2.2)

the filter transfer function. Let Hm be the m2-dimensional, real vector space of
Hermitian matrices of dimension m×m, Hm,+ be the intersection between Hm and
the open cone of positive definite matrices and Hm,+ its closure. We denote by
C(T,Hm) the family Hm-valued, continuous functions on the unit circle T. Consider
now the linear operator

Γ : C(T,Hm)→ Hp, Ψ 7→
∫
GΨG∗,(2.3)

where integration takes place on T with respect to the normalized Lebesgue measure
dϑ/2π. It follows that Σ belongs to the linear space

Range Γ := {M ∈ Hp| ∃Ψ ∈ C(T,Hm) such that

∫
GΨG∗ = M}.(2.4)

Suppose now that A,B,C,D are known and a sample data {yk}Ni=1 is given. We

want to compute an estimate Σ̂ of Σ such that Σ̂ ∈ [Range Γ]+, where [Range Γ]+
denotes the closure of [Range Γ]+ := Range Γ ∩ Hp,+. If we feed G(z) with the data
{yk}Nk=1 and collect the output data {wk}Nk=1, an estimate of Σ is given by the sample

covariance Σ̂C := 1
N

∑N
k=1 wkw

∗
k ≥ 0. This estimate usually fails to belong to Range Γ

which is typically a low-dimensional vector space in Hp, see below. One could project

Σ̂C onto Range Γ obtaining a new Hermitian matrix Σ̂Γ. This matrix Σ̂Γ, however,
may be indefinite and this is particularly likely when N is not large. In addition, the
computation of a basis for Range Γ is not trivial.

3. Characterization of Range Γ. Here we present some results concerning the
range of the operator Γ. Most of proofs are omitted or only sketched: we refer to
[8],[16] for all the details. We start by considering a particular, yet very relevant,
situation. We will later deal with the general case.



DRAFT 3

3.1. State covariance matrices. We restrict attention to the case when C = In
and D = 0n×m, with m < n = p, so that Σ is a state covariance matrix. Under the
additional assumptions that (A,B) is a reachable pair and B has full column rank,
it was shown in [9], [11] (see also [14]), that an n × n matrix M ∈ Hn belongs to
Range Γ if and only if there exists H ∈ Cm×n such that

M −AMA∗ = BH +H∗B∗.(3.1)

Proposition 3.1. Range Γ has real dimension equal to m(2n −m). Moreover
M ∈ Range Γ if and only if the following condition holds

Π⊥B(M −AMA∗)Π⊥B = 0,(3.2)

where we denote by Π⊥B := I−B(B∗B)−1B∗ the orthogonal projection onto [RangeB]⊥.
Proof. We only show the necessity of condition (3.2). We know that there exists

H ∈ Cm×n such that

M −AMA∗ = BH +H∗B∗.(3.3)

Pre and post-multiplying this relation by Π⊥B , we obtain

Π⊥B(M −AMA∗)Π⊥B = Π⊥B(BH +H∗B∗)Π⊥B = Π⊥BBHΠ⊥B + [Π⊥BBHΠ⊥B ]∗ = 0.

Then, it is possible to relax the reachability assumption.
Theorem 3.2. Consider an (A,B) pair with B full column rank. Let T ∈ Cn×n

be a state space transformation such that the pair (T−1AT, T−1B) is in standard
reachability form. Let l be the dimension of the reachable subspace. Assume l > m.
Then, Range Γ has real dimension equal to m(2l −m) and M ∈ Range Γ if and only
if there exists H1 ∈ Cm×l such that

M −AMA∗ = B
[
H1 0

]
T ∗ + T

[
H∗1
0

]
B∗.(3.4)

Note that the above theorem enables us to easily compute a basis for Range Γ also
when the pair (A,B) is not reachable.

3.2. Characterization of Range Γ in the general case. We now consider a
general linear filter G(z) = C(zI −A)−1B+D and the corresponding linear operator
Γ defined in (2.3). Moreover, we define the linear operator

Λ : C(T,Hm)→ Hn+p, Ψ 7→
∫
LΨL∗(3.5)

where

L(z) :=

(
zI −

[
A 0
C 0

])−1 [
B
D

]
=

[
GS(z)
z−1G(z)

]
(3.6)

and GS(z) = (zI −A)−1B.
Theorem 3.3. M ∈ Range Γ if and only if there exist P ∈ Cn×n and Q ∈ Cn×p

such that

X :=

[
P Q
Q∗ M

]
∈ Range Λ.(3.7)

Note that, L(z) satisfies the hypothesis of Theorem 3.2. Accordingly, we can compute
a basis for Range Λ.
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4. State covariance matrix estimation. We start by considering the impor-
tant special case where the output of the filter G(z) coincides with its state, i.e. C = I,
D = 0 and n = p. It is moreover assumed that the pair (A,B) is reachable and the
spectral density of y is coercive (so that the to-be-estimated covariance Σ is necessar-
ily strictly positive definite) and that the matrix B is full column rank. Accordingly,
we want to compute an estimate Σ̂ ∈ [Range Γ]+ of Σ ∈ Hn,+ from Σ̂C ∈ Hn,+.

4.1. Projection method. This approach, [13, Section 8], [8], consists in pro-
jecting Σ̂C onto Range Γ. Denote by Σ̂Γ the projected matrix. If Σ̂Γ is not pos-
itive definite, it may be further adjusted adding a matrix of the form εΣ+ with
Σ+ ∈ [Range Γ]+ and ε > 0 so large that Σ̂PJ := Σ̂Γ + εΣ+ > 0. In this way, Σ̂PJ is
a positive definite estimate belonging to Range Γ of the true state covariance Σ. Note
that (under the assumptions (A,B) reachable pair and B full column rank) a basis for
Range Γ can be easily computed from (3.1). A positive definite matrix Σ+ ∈ Range Γ
indeed exists and can be easily computed as follows. Set H+ := 1

2B
∗ and consider

the equation

Σ+ −AΣ+A
∗ = BH+ +H∗+B

∗ = BB∗.(4.1)

Since (A,B) is reachable and A is a stable matrix, we have that (4.1) admits a unique
solution Σ+ and such a solution is indeed positive definite. In view of (3.1), Σ+ also
belongs to Range Γ.

4.2. Maximum entropy method. Recall that a fundamental (pseudo-)distance
in mathematical statistics is the information divergence (Kullback-Leibler index, rel-
ative entropy), [5]. For two Gaussian distributions pΣ, pΩ on Rn with zero mean and
covariance matrices Σ ∈ Hn,+ and Ω ∈ Hn,+, respectively, it is given by

D(pΣ‖pΩ) :=
1

2

[
log det(Σ−1Ω) + tr(Ω−1Σ)− n

]
.(4.2)

Notice that the right-hand side of (4.2) provides a natural pseudo-distance, denoted
henceforth by D(Σ‖Ω), on the space Hn,+. In [2, p.963], the above index is min-
imized with respect to the second argument obtaining a maximum-likelihood ap-
proach. Unfortunately, the solution can be computed only for special classes of prob-
lems. This fact leads us to consider the following problem: Given Σ̂C ∈ Hn,+ and

G(z) = (zI−A)−1B, minimize D(Σ‖Σ̂C) over Σ ∈ [Range Γ]+. The solution provides
the required estimate denoted as Σ̂ME .

In view of Proposition 3.1, our problem can be reformulated as follows: Find Σ ∈
Hn,+ minimizing D(Σ‖Σ̂C) subject to the linear constraint Π⊥B(Σ − AΣA∗)Π⊥B = 0.
Thus, the problem resembles a most standard maximum entropy (or, equivalently,
minimum relative entropy) problem [12], [5]. The Lagrangian function is

L(Σ,Λ) = D(Σ‖Σ̂C) + tr
[
ΛΠ⊥B(Σ−AΣA∗)Π⊥B

]
= −1

2
log det Σ +

1

2
log det Σ̂C +

1

2
tr(Σ̂−1Σ)− n

2
+ tr

[
ΛΠ⊥B(Σ−AΣA∗)Π⊥B

]
.(4.3)

The corresponding unconstrained problem consists in minimizing L(Σ,Λ) over Σ ∈
Hn,+. Then, the first variation at Σ > 0 in direction δΣ ∈ Hn is given by

δL(Σ,Λ, δΣ) = tr[(−1

2
Σ−1 +

1

2
Σ̂−1
C + Π⊥BΛΠ⊥B −A∗Π⊥BΛΠ⊥BA)δΣ].
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By annihilating the first variation for each δΣ ∈ Hn, we get that the form of the
optimal solution is

ΣΛ =
(

Σ̂−1
C + 2QΛ

)−1

,(4.4)

where

QΛ := Π⊥BΛΠ⊥B −A∗Π⊥BΛΠ⊥BA(4.5)

belongs to Range Γ⊥, [8], and Λ ∈ Hn must satisfy the inequality

Σ̂−1
C + 2Π⊥BΛΠ⊥B − 2A∗Π⊥BΛΠ⊥BA > 0.(4.6)

Thus, the original problem is reduced to finding Λ̂ satisfying (4.6) and such that
ΣΛ̂ satisfies (3.2). It turns out that the dual problem is equivalent to minimize the
following function

J(Λ) := −1

2
tr log

(
Σ̂−1
C + 2QΛ

)
(4.7)

over the set

L := {Λ ∈ Hn | Σ̂−1
C + 2QΛ > 0 and Π⊥BΛΠ⊥B 6= 0}.(4.8)

Theorem 4.1. The dual functional (4.7) has a unique minimum point in L.
Proof. Since L is a bounded set and J is strictly convex over it, [8], we only need

to show that J takes a minimum value on L. First we observe that J is continuous
on its domain. We now demonstrate that J is inf-compact, i.e., the image of (−∞, r]
under the map J−1 is a compact set. It is then sufficient to apply Weierstrass theorem
which states that a continuous function defined on a compact set admits a minimum.
Indeed, observing that J(0) = 1

2 log det Σ̂C , we can restrict the search for a minimum

point to the image of (−∞, 1
2 log det Σ̂C ] under J−1. Since L is a bounded set, it is

sufficient to show that

lim
Λ→∂L

J(Λ) = +∞.(4.9)

Note that ∂L is the set of Λ ∈ Hn, Π⊥BΛΠ⊥B 6= 0 for which Σ̂−1 + 2QΛ is a singular
positive semi-definite matrix. Thus, for Λ → ∂L all its eigenvalues remain bounded
and at least one of them tends to 0+. We denote with λ1, . . . , λn > 0 the eigenvalues
of Σ̂−1 + 2QΛ and, without loss generality, we suppose that, for Λ → ∂L, λ1 → 0+.
Hence

lim
Λ→∂L

J(Λ) = lim
λ1→0+

−1

2
log

n∏
i=1

λi = lim
λ1→0+

n∑
i=1

log
1√
λi

= +∞.(4.10)

5. Covariance matrix estimation in the general framework. We now deal
with the general problem of finding an estimate Σ̂ ∈ [Range Γ]+ of Σ ∈ Hn,+ given

the sample covariance Σ̂C ∈ Hn,+ and G(z) as in (2.2).
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5.1. Constrained covariance estimation method. This approach exploits
the following result which characterizes the output covariance Σ in terms of the filter
parameters and the covariance lags of y. For the proof we refer to [16].

Theorem 5.1. Let y and w be the input and output processes of the linear filter
G(z) as defined in (2.2). Then, the covariance matrix of wk is given by

Σ = CPC∗ + CQD∗ +DQ∗C∗ +DR0D
∗(5.1)

where

Q :=

∞∑
j=1

Aj−1BR∗j , Rj := E[yk+jy
∗
k](5.2)

and P is the (unique) solution of the Lyapunov equation

P −APA∗ = AQB∗ +BQ∗A∗ +BR0B
∗.(5.3)

This enables us to define an estimate Σ̂CL of the output covariance depending
on an estimate R̂j of the input covariance lags and to characterize the key feature

Σ̂CL ∈ Range Γ in terms of a suitable property of the R̂j ’s as follows.
Corollary 5.2. Let

TM (R) :=


R0 R−1 R−M

R1
. . .

. . .

. . .
. . . R−1

RM R1 R0

 ≥ 0(5.4)

define the block-Toeplitz covariance matrix of order M of the process with covariance
sequence {Rj}∞j=0. Let {R̂j}∞j=0 be a sequence of m×m matrices such that TM (R̂) ≥ 0
for each M ∈ N. Define

Σ̂CL := CP̂C∗ + CQ̂D∗ +DQ̂∗C∗ +DR̂0D
∗(5.5)

where Q̂ :=
∑∞
j=1A

j−1BR̂∗j and P̂ is the (unique) solution to the Lyapunov equation

P̂ −AP̂A∗ = AQ̂B∗ +BQ̂∗A∗ +BR̂0B
∗.(5.6)

Then, Σ̂CL ∈ [Range Γ]+.

Proof. Since TM (R̂) ≥ 0 for each M ∈ N, there exists a wide sense stationary
Cm-valued process ŷ with covariance lags sequence {R̂j}∞j=0. If we feed the filter G(z)
with ŷ, we get a stationary output process ŵ. In view of Theorem 5.1, it follows that
the covariance matrix of ŵ is Σ̂CL ∈ [Range Γ]+.

In [16] it was shown that a possible strategy is given by the Blackman-Tukey
method [1] with a rectangular lag window of width equal to L

R̂j =

{
1
N

∑N−j
k=1 yk+jy

∗
k, 0 ≤ j < L

0m×m, j ≥ L.(5.7)

and L is chosen in such way that ‖AL−1‖ < ε, where ε is a threshold constant.
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5.1.1. Projection method in the general case. We now show how to extend
the projection method of Section 3 to the general setting considered in this paper.
Let us first consider the situation where (A,B) may be non reachable (so that Σ ≥ 0
may be singular) but still C = I and D = 0. In view of Theorem 3.2, we can easily
compute a basis for Range Γ. Accordingly, we are able to compute the corresponding
projected matrix Σ̂Γ of Σ̂. Here Σ+ ≥ 0 may be singular because we have removed
the reachability condition. However, when Σ̂Γ is indefinite, there always exists ε > 0
such that Σ̂PJ := Σ̂Γ + εΣ+ ≥ 0 because the null space of Σ+ coincides with the
orthogonal complement of the reachable subspace of the pair (A,B). Then, in view
of Theorem 3.3, we can employ the above procedure in order to estimate the output
state covariance matrix of the filter L(z) when is fed by the sample data {yk}Nk=1. Let

X̂PJ ∈ [Range Λ]+ denote the estimate, then Σ̂PJ =
[

0 Ip
]
X̂PJ

[
0
Ip

]
.

6. Performance comparison. Here we sum up the comparison results among
the constrained covariance estimation (CL), projection (PJ) and maximum entropy
(ME) methods found once fixed G(z) an the length N of the observed sequence. A
detailed description can be found in [8],[16]. For each method we take into account
the means µCL, µPJ , µME and the variances σ2

CL, σ2
PJ , σ2

ME of the corresponding
relative error sequences {eCL(j)}, {ePJ(j)}, {eME(j)} indexed by j. For each j, we
choose a different sample path y1 . . . yN in order to make the comparison reasonably
independent of the specific data set. For example, the relative error at the j-th
experiment for the CL method with estimate Σ̂CL(j) is

eCL(j) =
‖Σ̂CL(j)− Σ‖

‖Σ‖
.(6.1)

It turns out that CL and ME methods largely outperform the PJ method. The
heuristic reason follows: the projection of X̂C (that is a perturbed version of the state
covarianceX) onto Range Λ yields a matrix X̂Λ that, in many cases, in particular when
N is small, fails to be positive definite (or even positive semi-definite). Moreover, when
X̂Λ is indefinite the projection method add to it the positive definite matrix X+ ∈
Range Λ. For each experiment, X+ is the same. Accordingly the adjustment cannot
be expected to provide a good estimate of Σ̂PJ . Then, CL and ME methods provide
quite similar performances. The unique remarkable difference can be noted when Σ
tend to be singular: Here the CL method outperforms in terms of computational
burden the ME one. Finally, notice that ME method can be only used when Σ is a
positive definite state covariance matrix.

7. Conclusion. In this paper, we have presented different approaches available
in literature to estimate the covariance matrix Σ of the output processes of a given
linear filter under the constraints of positivity and consistency with the structure
imposed by the filter. The first one, PJ method, is a simple minded approach based
on the projection principle. The second one is the CL method which hinges on an
explicit representation of Σ in terms of the given filter and the covariance lags sequence
of the input process. The last one, called ME method, is based on an optimization
approach, which can be only employed to estimate positive definite state covariances.
Finally, simulation evidence that CL and ME are preferable to the PJ method.
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