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a b s t r a c t

This paper discusses a method for estimating the covariance matrix of a multivariate stationary process
w generated as the output of a given linear filter fed by a stationary process y. The estimated covariance
matrix must satisfy two constraints: it must be positive semi-definite and it must be consistent with the
fact that w is the output of the given linear filter. It turns out that these constraints force the estimated
covariance to lie in the intersection of a cone with a linear space. While imposing only the first of the two
constraints is rather straightforward, guaranteeing that both are satisfied is a non-trivial issue to which
quite a bit of attention has already been devoted in the literature. Our approach extends the method for
estimating the Toeplitz covariance matrix of order M of a process y based on the biased spectral estimator
(Stoica &Moses, 1997). This extension is based on the characterization of the output covariance matrix in
terms of the filter parameters and the sequence of covariance lags of the input process.

After introducing our estimation method, we propose a comparison performance between this one
and other methods proposed in the literature. Simulation results show that our approach constitutes a
valid estimation procedure.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we consider the process w = {wk}
∞

k=−∞
obtained

as the output of a given stable rational filterG(z) fed by a stationary
process y = {yk}∞k=−∞

. We assume to observe a finite-length
collection of sample data y1, . . . , yN of the stochastic process y. We
want to compute an estimate Σ̂ of the covariance Σ := E[wkw

∗

k ]

in such a way that Σ̂ is both positive semi-definite and consistent
with the filter G(z). Here ∗ denotes transposition plus conjugation.
To analyze the features of this problem and to provide some
motivations and applications, we discuss a very simple example.
Let y be a real scalar second-order stationary process and let G(z)
be a bank of l delays:

G(z) :=

z−l z−l+1

· · · z−1⊤
. (1)

In this case, the covariancematrixΣ of the output2 w has the form
of a symmetric Toeplitz matrix having the first l covariance lags of
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y on the first row:

Σ :=


r0 r1 · · · rl−1

r1 r0
. . . rl−2

...
. . .

. . .
. . .

rl−1
. . . r1 r0

 , rh := E[yk+hy∗

k ]. (2)

If we need to estimate Σ , it is natural to impose that the estimate
Σ̂ be positive semi-definite andhave Toeplitz structure. On the one
hand, one can consider the estimate Σ̂ obtained by computing the
sample covariance lags of y and constructing the corresponding
Toeplitz matrix. This estimate, however, is not guaranteed to be
positive semi-definite. On the other hand, one can compute the
sample covariance Σ̂C :=

N
k=1 wkw

∗

k of the output process w.
The latter is, by construction, positive semi-definite but is not
guaranteed to be Toeplitz. Notice, in passing, that the orthogonal
projection of this estimate onto the linear space of Toeplitz
matrices is no longer guaranteed to be positive semi-definite. This
problem, yet important, is very special due to the FIR structure
of G(z) in (1). In this case, it is well-known that the problem
can be solved by computing, from y1, . . . , yN , the estimates r̂h
of the rh in (2), with the biased correlogram spectral estimator
(Stoica & Moses, 1997). Alternatively, one can use a constrained
convex optimization approach (Burg, Luenberger, &Wenger, 1982;
Ferrante, Pavon, & Zorzi, 2012).

The estimation of positive semi-definite Toeplitz matrices is
just an instance of a class of problems in digital signal processing
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where the covariance matrix of the output process of a general
linear filter has to be estimated with the knowledge of the
input sample data. The importance of these problems is due
to the development of a family of spectral estimation methods
introduced by Byrnes, Georgiou and Lindquist in Byrnes, Georgiou,
and Lindquist (2000), and Byrnes, Georgiou, and Lindquist (2001),
and further developed andmodified in Georgiou (2002a), Ferrante,
Masiero, and Pavon (in press) and Ferrante, Pavon, and Ramponi
(2008). Thesemethods, forwhich y1, . . . , yN andG(z) are the given
data, are based on a moment problem that requires an estimate of
the covariance matrix of the output w. The first of these spectral
estimation methods was called ‘‘THREE’’, Byrnes et al. (2000): we
shall thus refer to these methods as ‘‘THREE-like’’.

For the special case of linear filters G(z) whose output is
the state of the filter, the problem of characterizing the output
covariance Σ has been addressed by Georgiou in Georgiou (2001)
and Georgiou (2002b). This characterization can be employed
to estimate the state covariance by resorting to the maximum
likelihood approach proposed in Burg et al. (1982)which, however,
requires that the state covarianceΣ and the sample covariance Σ̂C
are strictly positive definite. In Ferrante et al. (2012), a maximum
entropyproblemhas beenproposed that leads to a positive definite
estimate Σ̂ consistent with the filter structure. Notice that also
this technique requires that the state covarianceΣ and the sample
covariance Σ̂C are strictly positive definite and that the filter’s
output and state coincide. On the other hand, these techniques do
not exploit the knowledge of y1, . . . , yN that, in the THREE-like
methods, are the problem data.

The purpose of this paper is to introduce a new approach—
based on the knowledge of the input sample data y1, . . . , yN—to
compute a positive semi-definite estimate Σ̂ whose structure is
consistent with an arbitrary, finite dimensional, stable, linear filter
G(z). Our method, which is an extension of the one for estimating
the Toeplitz covariance matrix of orderM of the process y based on
the biased spectral estimator (Stoica & Moses, 1997), hinges on the
characterization of Σ in terms of the filter G(z) and the covariance
lags sequence of the input process y. Thus, given an estimate of the
covariance lags sequence of the input process, we can compute an
estimate Σ̂ consistent with the structure imposed by the filter. It
will be shown that if we consider the sample covariance lags used
in the biased correlogram spectral estimatorwe can guarantee that
Σ̂ ≥ 0.

The paper is organized as follows. In the next section, we
present amore precise formulation of the problem. In Section 3, the
vector space containing the covariancematricesΣ is characterized
in terms of the filter G(z). Section 4 is devoted to introduce our
approach based on the covariance lags. In Section 5, we briefly
discuss other approaches available in the literature and their
possible generalizations. Section 6 is devoted to simulations: we
compare covariance matrices estimated by our method with the
ones obtained using alternative approaches. In Section 7, we draw
our conclusions.

2. Problem formulation

Consider a linear filter

xk+1 = Axk + Byk
wk = Cxk + Dyk, k ∈ Z, (3)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n,D ∈ Cp×m and A has all its
eigenvalues in the open unit disk. The input process y isCm-valued,
wide sense stationary and purely nondeterministic. As mentioned
in the Introduction, Σ = Σ∗

≥ 0 denotes the covariance matrix
of the (stationary) output process w and we denote by

G(z) = C(zI − A)−1B + D (4)
the filter transfer function. Let Hm be the m2-dimensional, real
vector space ofHermitianmatrices of dimensionm×m andHm,+ be
the intersection between Hm and the closed cone of positive semi-
definite matrices. We denote by C(T, Hm) the family Hm-valued,
continuous functions on the unit circle T. Consider now the linear
operator

Γ : C(T, Hm) → Hp, Ψ →


GΨG∗, (5)

where integration takes place on T with respect to the normalized
Lebesgue measure dϑ/2π . It follows that Σ belongs to the linear
space

Range Γ :=


M ∈ Hp| ∃Ψ ∈ C(T, Hm)

such that


GΨG∗
= M


. (6)

Suppose now that A, B, C,D are known and a sample data {yk}Ni=1
is given. We want to compute an estimate Σ̂ of Σ such that

Σ̂ ∈ [Range Γ ]+ := Range Γ ∩ Hp,+. (7)

If we feed G(z) with the data {yk}Nk=1 and we collect the output
data {wk}

N
k=1, an estimate of Σ is given by the sample covariance

Σ̂C :=
1
N

N
k=1 wkw

∗

k ≥ 0. This estimate, as it happened in the
example discussed in the Introduction, normally fails to belong to
RangeΓ . In fact, RangeΓ is a linear vector subspace usually strictly
contained in Hp. One could project Σ̂C onto Range Γ obtaining
a new Hermitian matrix Σ̂Γ . This matrix Σ̂Γ , however, may be
indefinite and this is particularly likely when N is not large. In
addition, when the linear filter G(z) does not satisfy particular
properties, the computation of a basis for Range Γ is not trivial.

3. Characterization of Range Γ

Westart by considering a particular, yet very relevant, situation.
We will later deal with the general case.

3.1. State covariance matrices

Next we restrict attention to the case when C = In and D =

0n×m, with m < n, so that Σ is a state covariance matrix. Under
the additional assumptions that (A, B) is a reachable pair and B has
full column rank, it was shown in Georgiou (2001) and Georgiou
(2002b) (see also Ramponi, Ferrante, & Pavon, 2010), that an n× n
matrix M ∈ Hn belongs to Range Γ if and only if there exists
H ∈ Cm×n such that
M − AMA∗

= BH + H∗B∗. (8)
Moreover, it is possible to prove that Range Γ has real dimension
equal to m(2n − m), Ferrante et al. (2012).

We nowwant to relax the reachability assumption. To this end,
we derive a preliminary result. Consider an (A, B) pair and the
operator Γ corresponding to G(z) = (zI − A)−1B. We perform a
state space transformation induced by an invertible matrix T ∈

Cn×n,

Ã := T−1AT , B̃ := T−1B. (9)
We define the corresponding operator

Γ̃ : C(T, Hm) → Hn, Ψ →


G̃Ψ G̃∗ (10)

with G̃(z) = (zI − Ã)−1B̃ = T−1G(z). Note that
GΨG∗

=


T G̃Ψ G̃∗T ∗, ∀Ψ ∈ C(T, Hm). (11)
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Thus, Range Γ and RangeΓ̃ are isomorphic vector spaces and

M̃ ∈ Range Γ̃ ⇔ TM̃T ∗
∈ Range Γ . (12)

Theorem 1. Consider an (A, B) pair with B full column rank. Let
T ∈ Cn×n be a state space transformation such that the pair
(T−1AT , T−1B) is in standard reachability form. Let l be the dimension
of the reachable subspace. Assume l > m. Then, Range Γ has real
dimension equal to m(2l − m) and M ∈ Range Γ if and only if there
exists H1 ∈ Cm×l such that

M − AMA∗
= B


H1 0


T ∗

+ T

H∗

1
0


B∗. (13)

Proof. The proof is divided in three steps.
Step (1) By assumption, we have

Ã := T−1AT =


A1 A12
0 A2


, B̃ := T−1B =


B1
0


(14)

where A1 ∈ Cl×l, A12 ∈ Cl×(n−l), A2 ∈ C(n−l)×(n−l), B1 ∈ Cl×m,
(A1, B1) reachable and B1 full column rank. Then, it is easy to see
that

G̃(z) = (zI − Ã)−1B̃ =


G1(z)
0


(15)

with G1(z) = (zI − A1)
−1B1. Moreover, for each Ψ ∈ C(T, Hm) we

have
G̃Ψ G̃∗

=


G1ΨG∗

1 0

0 0


. (16)

Accordingly,

Range Γ̃ =


M1 0
0 0


s.t. M1 ∈ Range Γ1


(17)

where

Γ1 : C(T, Hm) → Hl, Ψ →


G1ΨG∗

1. (18)

It follows that Range Γ has the same dimension of Range Γ1 and,
since (A1, B1) is reachable and B1 full column rank, as recalled be-
fore, such dimension is equal tom(2l − m).

Step (2) Since (A1, B1) is reachable and B1 full column rank,
exploiting condition (8), we have that M̃ ∈ Range Γ̃ if and only if

M̃ =


M1 0
0 0


, M1 ∈ Cl×l (19)

and there exists H1 ∈ Cm×l such that

M1 − A1M1A∗

1 = B1H1 + H∗

1B
∗

1. (20)

The above condition is equivalent to the existence of H1 ∈ Cm×l

such that

M̃ − ÃM̃Ã∗
= B̃


H1 0


+


H∗

1
0


B̃∗

=


B1H1 + H∗

1B
∗

1 0
0 0


. (21)

Here, we have exploited the fact that the (unique) solution M̃ of
the Lyapunov equation (21) has the block-diagonal structure (19)
with M1 being the solution of (20).

Step (3) Pre and post multiplying (21) by T and T ∗, respectively,
we see that M̃ ∈ Range Γ̃ if and only if ∃H1 ∈ Cm×l such thatM :=

TM̃T ∗ satisfies (13). Exploiting (12) we obtain the statement. �
The previous theorem enables us to easily compute a basis for
Range Γ also when the pair (A, B) is not reachable.

3.2. Characterization of Range Γ in the general case

Wenow consider a general linear filterG(z) = C(zI−A)−1B+D
and the corresponding linear operator Γ defined in (5). Moreover,
we define the linear operator

Λ : C(T, Hm) → Hn+p, Ψ →


LΨ L∗ (22)

where

L(z) :=


zI −


A 0
C 0

−1 
B
D


=


GS(z)

z−1G(z)


(23)

and GS(z) = (zI − A)−1B.

Theorem 2. M ∈ Range Γ if and only if there exist P ∈ Cn×n and
Q ∈ Cn×p such that

X :=


P Q
Q ∗ M


∈ Range Λ. (24)

Proof. Assume thatM ∈ RangeΓ , then there existsΨ ∈ C(T, Hm)
such that M =


GΨG∗. Define

P :=


GSΨG∗

S , Q :=


eiϑGSΨG∗. (25)

It follows that

X :=


P Q
Q ∗ M


=




GSΨG∗

S


eiϑGSΨG∗

e−iϑGΨG∗

S


GΨG∗


=

 
GS

e−iϑG


Ψ


G∗

S eiϑG∗


=


LΨ L∗. (26)

Accordingly X ∈ Range Λ.
Conversely, assume that there exist P and Q such that (24)

holds. Then there exists Ψ ∈ C(T, Hm) such that

X =


P Q
Q ∗ M


=


LΨ L∗

=




GSΨG∗

S


eiϑGSΨG∗

e−iϑGΨG∗

S


GΨG∗

 . (27)

Accordingly,M =

GΨG∗, namelyM ∈ Range Γ . �

Note that, L(z) satisfies the hypothesis of Theorem 1. Accord-
ingly, we can compute a basis for Range Λ.

4. Constrained covariance estimation method

In this section, we first characterize the output covariance Σ
in terms of the filter parameters and the covariance lags of y
(Theorem3). This enables us to define an estimate Σ̂CL of the output
covariance depending on an estimate R̂j of the input covariance lags
and to characterize the key feature Σ̂CL ∈ Range Γ in terms of a
property of the R̂j’s (Corollary 4). Finally, we present a method to
compute the R̂j’s guaranteeing Σ̂CL ∈ [Range Γ ]+.

Let Rj := E[yk+jy∗

k ], j ∈ Z, be the jth covariance lag of y. Notice
that Rj = R∗

−j.

Theorem 3. Let y and w be the input and output processes of the
linear filter G(z) as defined in (4). Then, the covariance matrix of wk
is given by
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Σ = CPC∗
+ CQD∗

+ DQ ∗C∗
+ DR0D∗ (28)

where

Q :=

∞
j=1

Aj−1BR∗

j (29)

and P is the (unique) solution of the Lyapunov equation

P − APA∗
= AQB∗

+ BQ ∗A∗
+ BR0B∗. (30)

Proof. From (3) we have

wkw
∗

k = Cxkx∗

kC
∗
+ Cxky∗

kD
∗
+ Dykx∗

kC
∗
+ Dyky∗

kD
∗.

Taking expectations on both sides, we get (28), where P := E[xkx∗

k ].
Eq. (30) follows from Georgiou (2002b, Theorem 1). �

We now define the block-Toeplitz matrix

TM(R) :=


R0 R−1 R−M

R1
. . .

. . .

. . .
. . . R−1

RM R1 R0

 (31)

as the covariance matrix of order M of the process y. Notice that,
TM(R) ≥ 0 for each M ∈ N.

Corollary 4. Let {R̂j}
∞

j=0 be a sequence of m × m matrices such that
TM(R̂) ≥ 0 for each M ∈ N. Define

Σ̂CL := CP̂C∗
+ CQ̂D∗

+ DQ̂ ∗C∗
+ DR̂0D∗ (32)

where Q̂ :=


∞

j=1 A
j−1BR̂∗

j and P̂ is the (unique) solution to the
Lyapunov equation

P̂ − AP̂A∗
= AQ̂B∗

+ BQ̂ ∗A∗
+ BR̂0B∗. (33)

Then, Σ̂CL ∈ [Range Γ ]+.

Proof. Since TM(R̂) ≥ 0 for each M ∈ N, there exists a wide sense
stationary Cm-valued process ŷ with covariance lags sequence
{R̂j}

∞

j=0. If we feed the filter G(z) with ŷ, we get a stationary output
process ŵ. In view of Theorem 3, it follows that the covariance
matrix of ŵ is Σ̂CL ∈ [Range Γ ]+. �

Thus, once we have an estimate {R̂j}
∞

j=0 of the covariance lags
sequence of y satisfying TM(R̂) ≥ 0 for each M ∈ N, a positive
semi-definite estimate Σ̂CL ∈ Range Γ of the true covariance Σ

is given by (32). It remains to choose a method to estimate {R̂j}
∞

j=0

from the sample data {yk}Nk=1 in such away that TM(R̂) ≥ 0 for each
M ∈ N.We consider the correlogram spectral estimator, Stoica and
Moses (1997), Φ̂ =


∞

j=−∞
R̂je−iϑ j where

R̂j =


1
N

N−j
k=1

yk+jy∗

k , 0 ≤ j < N

0m×m, j ≥ N.

(34)

This method suffers from the drawback that the reliability of
the estimate R̂j decreases considerably as j grows, especially
for relatively short time series, Kendall, Stuart, and Ord (1983).
The corresponding estimated joint correlation Q̂ is, however, a
finite sum. Moreover, it is easy to see that TM(R̂) = YMY ∗

M ≥

0 where YM =
1

√
N
C with C ∈ CmM×(M−1+N) being the

left block-circulant (block Hankel) matrix, with m block rows,
having


0m×1 · · · · · · 0m×1 y1 · · · yN


as the first block

row. Notice that, in view of (28)–(30), the term Aj−1 in Σ̂CL acts as
‘‘reliability index’’ for the estimate R̂j. Indeed, due to the presence
of the term Aj−1, the influence of R̂j on Σ̂CL decreases as j increases.
Accordingly, we can truncate the covariance lags sequence in (34)
to L

R̂j =


1
N

N−j
k=1

yk+jy∗

k , 0 ≤ j < L

0m×m, j ≥ L.

(35)

L is chosen in such a way that ∥AL−1
∥ < ε, where ε is a

threshold constant. Notice that (35) is the covariance lags sequence
obtained by the Blackman–Tukey method (Blackman & Tukey,
1958) using a rectangular lag window of width equal to L. Thus,
the corresponding block-Toeplitz matrix TM(R̂) is positive semi-
definite for each M; see Stoica and Moses (1997). Hence, (35) is
a natural choice for computing Σ̂CL.

The previous results suggest the following simple procedure,
which we shall refer to as the input covariance lags method, to
compute Σ̂CL given the sample data {yk}Nk=1:

(1) Choose L such that ∥AL−1
∥ < ε.

(2) Compute

R̂0 =

N
k=1

yky∗

k , Q̂ =
1
N

L−1
j=1

N−j
k=1

Aj−1Byky∗

k+j.

(3) Solve in P̂ the Lyapunov equation (33).
(4) Compute the estimate Σ̂CL of the true covariance Σ using (32).

5. Alternative methods

In this section, we discuss alternative methods for the struc-
tured covariance estimation problem.

5.1. State covariance matrix estimation

The problem addressed in this paper has so far been addressed
in the literature under the following assumptions. The output of
the filter G(z) coincides with its state, i.e. C = I and D = 0.
Moreover, it was assumed that the pair (A, B) is reachable and
the spectral density of y is coercive (so that the to-be-estimated
covariance Σ is necessarily strictly positive definite) and that the
matrix B is full column rank. Next we review these methods. In
Section 5.2, we propose an extension of one of the methods to the
general situation dealt with in this paper.

5.1.1. Projection method
In Ramponi, Ferrante, and Pavon (2009, Section 8) and Ferrante

et al. (2012), a simple approach, called the projection method, was
proposed to compute a positive definite estimate Σ̂PJ ∈ Range Γ

of Σ (that was assumed to be strictly positive definite) from the
sample covariance Σ̂C . This method consists in projecting Σ̂C onto
Range Γ . Denote by Σ̂Γ the projected matrix. If Σ̂Γ is not positive
definite, it may be further adjusted by adding a matrix of the form
εΣ+ with Σ+ ∈ [Range Γ ]+ and ε > 0 so large that Σ̂PJ := Σ̂Γ +

εΣ+ > 0. In this way, Σ̂PJ is a positive definite estimate belonging
to Range Γ of the true state covariance Σ . Note that (under the
assumptions (A, B) reachable pair and B full column rank) a basis
for Range Γ can be easily computed from (8). A positive definite
matrix Σ+ ∈ Range Γ indeed exists and can be easily computed
as follows. Set H+ :=

1
2B

∗ and consider the equation

Σ+ − AΣ+A∗
= BH+ + H∗

+
B∗

= BB∗. (36)

Since (A, B) is reachable and A is a stable matrix, we have that (36)
admits a unique solutionΣ+ and such a solution is indeed positive
definite. In view of (8), Σ+ also belongs to Range Γ .
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5.1.2. Maximum entropy method
In Ferrante et al. (2012), a maximum entropy method was

presented to determine a positive definite estimate Σ̂ME ∈

Range Γ of the true state covariance Σ > 0. Consider the
information divergence (Kullback–Leibler index, relative entropy,
Cover & Thomas, 1991) between the two Gaussian distributions
pΣ , pΩ on Rn with zero mean and covariance matrices Σ > 0 and
Ω > 0, respectively

D(pΣ ∥ pΩ) :=
1
2
[log det(Σ−1Ω) + tr(Ω−1Σ) − n]. (37)

Given the sample covariance Σ̂C > 0 the maximum entropy
method computes Σ̂ME by minimizing D(pΣ ∥ pΣ̂C

) with respect
to Σ over the set {M = M∗ > 0 | M ∈ Range Γ }. As observed
in Burg et al. (1982, p. 963), D(· ∥ ·) ‘‘really comes from maximum
likelihood considerations and thus should, in some sense, gives us
a reasonable answer, even if the process is not Gaussian and the
vector samples are not independent’’. The optimal solution Σ̂ME
always exists and it is unique. Moreover, the maximum entropy
method attains better performances than the ones obtained by the
projection method; see Ferrante et al. (2012).

5.2. Projection method in the general case

We now show how to exploit the results of Section 3 to extend
the projection method to the general setting considered in this
paper.

Let us first consider the situation where (A, B) may be non-
reachable (so that Σ ≥ 0 may be singular) but still C = I and
D = 0. In view of Theorem 1, we can easily compute a basis for
Range Γ . Accordingly, we are able to compute the corresponding
projected matrix Σ̂Γ of Σ̂ . Here Σ+ ≥ 0 may be singular because
we have removed the reachability condition. However, when Σ̂Γ is
indefinite, there always exists ε > 0 such that Σ̂PJ := Σ̂Γ +εΣ+ ≥

0 because the null space of Σ+ coincides with the orthogonal
complement of the reachable subspace of the pair (A, B).

In view of Theorem 2, we can now extend the projection
method to the general case. Consider the linear filter L(z) as in (23).
Let v be the output process when L(z) is fed by y

vk+1 =


A 0
C 0


vk +


B
D


yk, k ∈ Z. (38)

Define then X := E[vkv
∗

k ] as the corresponding output covariance
matrix. We are now ready to outline the generalization of the
projection method. Let {vk}

N
k=1 be the output data when L(z)

is fed with the sample data {yk}Nk=1. Compute then the sample
matrix X̂C :=

1
N

N
k=1 vkv

∗

k . Notice that X is a state covariance
matrix. Applying the projectionmethod presented in Section 5.1.1,
we obtain an estimate X̂PJ ≥ 0 belonging to Range Λ. Finally,
exploiting Theorem 2, we have

Σ̂PJ :=

0 Ip


X̂PJ


0
Ip


. (39)

6. Performance comparison

In this section, we want to test the method presented in
Section 4with the other methods sketched in the previous section.
We use the following notation:

• The CL method to denote the input covariance lags method.
• The PJ method to denote the extended projection method

presented in Section 5.2.
• The ME method to denote the maximum entropy method (only

employed to estimate state covariance matrices).
For a fair interpretation of the comparison results, we hasten to
point out that while other methods exploit only a finite sample
of the output of the linear filter, our method uses only the
corresponding sample of the input process. Notice that in the
case of the estimate of state covariance matrices (and assuming
the matrix B to be full column rank) the sample of the input
process is easily obtainable from that of the output process and
the converse is also true. Therefore, the available information is
really the same for the three methods. On the contrary, for general
filters the available information may be different. Notice also that
in the applications related with THREE-like estimation methods
the available data are a finite sample of the input process.

6.1. A performance comparison procedure

Suppose that we have a finite sequence y1, . . . , yN extracted
from a sample path of a zero-mean, weakly stationary discrete-
time process y. We want to compare the estimates Σ̂CL, Σ̂PJ , Σ̂ME
obtained by employing CL, PJ and ME methods, respectively. In
order to make the comparison reasonably independent of the
specific data set, we average over 500 experiments performed
with sequences extracted fromdifferent sample paths.We are now
ready to describe the comparison procedure:

• Fix the transfer function G(z).
• At the jth experiment G(z) is fed by the data {yjk}

N
k=1. From

{yjk}
N
k=1 estimate Σ̂CL(j), Σ̂PJ(j) and Σ̂ME(j) using CL, PJ and ME

methods, respectively.
• Compute the relative error norm3 between Σ and the estimate

Σ̂CL(j)

eCL(j) =
∥Σ̂CL(j) − Σ∥

∥Σ∥
. (40)

In a similar way, compute the relative error norms ePJ(j) and
eME(j) between Σ and the estimates Σ̂PJ(j) and Σ̂ME(j), respec-
tively.

• Once completed the experiments, compute themeansµCL, µPJ ,

µME and the variances σ 2
CL, σ

2
PJ , σ

2
ME of the corresponding se-

quences {eCL(j)}500j=1, {ePJ(j)}
500
j=1, {eME(j)}500j=1. For example, for the

CL method:

µCL =
1

500

500
j=1

eCL(j), σ 2
CL =

1
500

500
j=1

(eCL(j) − µCL)
2.

• Count the number ♯F of times that the PJ method adjusts the
estimate X̂Γ by adding the quantity εX+.

Notice that the ME method can be only used when Σ is a
state covariance matrix (and not in the general case). For the
sake of comparison, we consider the parameters µi, σ

2
i and ♯F .

Clearly, the smaller these parameters, the better estimation is
expected.

6.2. Simulation results: the general case

We have considered a bivariate real process y with a high-
order spectral density Φ(z) and a filter G(z) with a 3-dimensional
output with 4 poles equi-spaced on the circle of radius 0.8. The
true covariance matrix Σ is positive definite with eigenvalues:
λ1 = 3.12 · 104, λ2 = 1.15 · 102, λ3 = 3.33 · 102. The
corresponding errormeans andvariances for the PJ andCLmethods
are reported in Table 1 for different values of the length N of the

3 Here the norm ∥ · ∥ is the spectral norm i.e. the matrix norm induced by the
Euclidean norm in Cp .
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Table 1
Parameters µCL, µPJ , σ

2
CL, σ

2
PJ , ♯F for G(z) considered in Section 6.2.

N µCL µPJ σ 2
CL σ 2

PJ ♯F

300 0.1360 0.4130 0.0089 2.0937 174
500 0.1016 0.2127 0.0045 0.5544 126
700 0.0865 0.1893 0.0031 0.8592 97

Table 2
Parameters µCL, µPJ , µME , σ

2
CL, σ

2
PJ , σ

2
ME , ♯F for G(z) considered in Section 6.3.

N µCL µPJ µME σ 2
CL σ 2

PJ σ 2
ME ♯F

300 0.18 0.81 0.18 0.018 2.65 0.02 73
500 0.16 0.47 0.15 0.013 1.37 0.013 37
700 0.13 0.29 0.13 0.001 0.74 0.009 18

observed data sequences {yk}Nk=1. It is clear that the CL method
largely outperforms the PJ method. The heuristic reason follows.
As noted in Ferrante et al. (2012), the projection of X̂C (that is a
perturbed version of the state covariance X) onto Range Λ yields a
matrix X̂Λ that, inmany cases, in particular whenN is small, fails to
be positive definite (or even positive semi-definite). This, explains
why the number of failures ♯F is significant. Moreover, when X̂Λ

is indefinite the projection method adds to it the positive definite
matrix X+ ∈ Range Λ. For each experiment, X+ is the same. In
view of (39), the adjustment cannot be expected to provide a good
estimate of Σ̂PJ . Note that µPJ , σ

2
PJ decrease as N increases: in fact,

X̂C → X with probability one as N → ∞. Notice that also µCL

and σ 2
CL decrease as N grows. Indeed, each R̂j approaches the true

covariance lag Rj as N → ∞. Accordingly Σ̂CL → Σ . Moreover,
each estimate Σ̂CL is positive definite. We conclude that the CL
method is remarkably preferable to the PJ method.

6.3. Simulation results: state covariance estimation

Consider G(z) corresponding to C = I6, D = 06×2,

A =


0.6 1 0 0 0 0
0 0.6 1 0 0 0
0 0 0.6 0 0 0
0 0 0 0.7 1 0
0 0 0 0 0.7 1
0 0 0 0 0 0.7

 , B =


0 0
1 0
0 1
0 0
1 0
0 1

 .

We choose the bivariate real process y with a coercive high-
order spectral density Φ(z) considered in Ferrante et al. (2012,
Section VII. C). The true covariance Σ is positive definite with
eigenvalues: λ1 = 3.4 · 10−3, λ2 = 1.69 · 10−2, λ3 = 1.47, λ4 =

2.92, λ5 = 1.18 · 10, λ6 = 1.59 · 102. In Table 2, we present
the results obtained for different lengths N of the observed se-
quences {yjk}

N
k=1. The CL andMEmethods provide quite similar per-

formances. The PJ method provides bad estimates when N is small.
In this situation, the PJ methodmust adjust the projection Σ̂C onto
Range Γ in many experiments. Accordingly, its performance be-
comes remarkably poor with respect to the othermethods whenN
is not large. Also in this case each estimate Σ̂CL is positive definite.

Remark 5. As for the computational burden, the PJ method
described in Section 5.2 normally compensates for the poor
performances with a very high numerical efficiency. The ME and
CL methods are very hardly comparable. In fact, the number
of operations of the ME and CL methods is highly dependent
on the problem’s parameters. Moreover, the ME method is an
optimization procedure whose computational burden is also
dependent on the tolerance threshold fixed for the convergence
of the algorithm. On the other hand, the CL does not require
any optimization procedure. For example, in the cases illustrated
above the twomethods perform very similarly also with respect to
the computational burden (while the PJ method is much faster).
On the other hand, extensive simulation shows that the ME
method presents numerical problems and leads to extremely slow
convergence, if we consider a case when the state covariance Σ is
close to singularity. Our method, on the contrary, does not require
any optimization procedure and does not present any of these
problems.

7. Conclusion

In this paper, we have proposed an efficient and natural
approach to estimate the covariance matrix Σ of the output
processes of a given linear filter under the constraints of positivity
and consistency with the structure imposed by the filter. Our
approach, called CL, hinges on an explicit representation of Σ in
terms of the given filter and the covariance lags sequence of the
input process. Not only the estimated matrix was shown to be
positive semi-definite, but extensive simulation suggests also that
the estimate is strictly positive definitewith high probabilitywhen
Σ > 0.We have also extended the PJmethod to the general setting
discussed in this paper andwe have compared our CLmethodwith
this extended PJmethod. It appears that, in several critical cases the
CL method outperforms the other one.

In order to have awider comparison,wehave tested ourmethod
also against the maximum entropy approach (Section 5.1.2) in the
restrictive framework where the latter method can be used. While
the performances of these two methods are normally very similar,
the CLmethod outperforms (in terms of computational burden) the
ME method when Σ is close to singularity.
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